Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy

Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2024-07, Vol.479 (7), p.1817-1831
Hauptverfasser: Lu, Linhe, Shao, Yalan, Wang, Nisha, Xiong, Xiang, Zhai, Mengen, Tang, Jiayou, Liu, Yang, Yang, Jian, Yang, Lifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1831
container_issue 7
container_start_page 1817
container_title Molecular and cellular biochemistry
container_volume 479
creator Lu, Linhe
Shao, Yalan
Wang, Nisha
Xiong, Xiang
Zhai, Mengen
Tang, Jiayou
Liu, Yang
Yang, Jian
Yang, Lifang
description Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure. However, its role in DOX-induced cardiomyopathy is unclear. Therefore, the present study investigated whether administering recombinant FSTL1 could mitigate DOX-induced cardiomyopathy and clarified the underlying molecular mechanisms. FSTL1 treatment attenuated DOX-induced cardiac dysfunction, cardiac fibrosis, and cellular apoptosis by inhibiting excess mitochondrial matrix protein methionine sulfoxide reductase B2 (MsrB2)-mediated mitophagy. Furthermore, FSTL1 administration reduced the expression of apoptotic proteins, including MsrB2, Bax, caspase 3, mitochondrial Parkin, and LC3-II, increased myocardial ATP content, and decreased cardiac malondialdehyde levels, thus protecting mitochondrial function against DOX-induced cardiac injury. Furthermore, FSTL1 treatment protected the contractile properties of adult cardiomyocytes against DOX-induced injury in vitro . Furthermore, carbonyl cyanide m-chlorophenylhydrazone, a mitophagy inducer, impaired the protective effects of FSTL1 in DOX-treated H9c2 cardiomyocytes. In conclusion, these results show that FSTL1 is a novel therapeutic agent against DOX-induced cardiotoxicity that improves mitochondrial function and decreases mitophagy.
doi_str_mv 10.1007/s11010-024-04955-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050178011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050178011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-3ac88e79a385434044c84bb54253dce5ef197fadc89392a0be0980327f3da4e33</originalsourceid><addsrcrecordid>eNp9kUFvFSEUhYnR2NfqH3BhSNy4QS8D8waW2lhr0sZNuyYM3HmPOjM8gUk6_17qq5q46AZI-M65cA4hbzh84ADdx8w5cGDQSAZSty3Tz8iGt51gUnP9nGxAADDFu-6EnOZ8B5UGzl-SE6G2elvPGxIv4jiGXGwJMxvDD6SHFAuGmXJqS8F5sQUz9fE-pqUPrlJh9otDT51NPsRpjQdb9ivtVxrmfehDddrR65w-N2xCH6re0ymUeNjb3fqKvBjsmPH1435Gbi--3JxfsqvvX7-df7piTjTbwoR1SmGnrVCtFBKkdEr2fSubVniHLQ5cd4P1TmmhGws9glYgmm4Q3koU4oy8P_rW7_xcMBczhexwHO2McclGQAu8UzWOir77D72LS5rr6yqlGuB11ZVqjpRLMeeEgzmkMNm0Gg7moQ5zrMPUOszvOsyD6O2j9dLXLP5K_uRfAXEEcr2ad5j-zX7C9hfbPZZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082013089</pqid></control><display><type>article</type><title>Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy</title><source>SpringerNature Journals</source><creator>Lu, Linhe ; Shao, Yalan ; Wang, Nisha ; Xiong, Xiang ; Zhai, Mengen ; Tang, Jiayou ; Liu, Yang ; Yang, Jian ; Yang, Lifang</creator><creatorcontrib>Lu, Linhe ; Shao, Yalan ; Wang, Nisha ; Xiong, Xiang ; Zhai, Mengen ; Tang, Jiayou ; Liu, Yang ; Yang, Jian ; Yang, Lifang</creatorcontrib><description>Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure. However, its role in DOX-induced cardiomyopathy is unclear. Therefore, the present study investigated whether administering recombinant FSTL1 could mitigate DOX-induced cardiomyopathy and clarified the underlying molecular mechanisms. FSTL1 treatment attenuated DOX-induced cardiac dysfunction, cardiac fibrosis, and cellular apoptosis by inhibiting excess mitochondrial matrix protein methionine sulfoxide reductase B2 (MsrB2)-mediated mitophagy. Furthermore, FSTL1 administration reduced the expression of apoptotic proteins, including MsrB2, Bax, caspase 3, mitochondrial Parkin, and LC3-II, increased myocardial ATP content, and decreased cardiac malondialdehyde levels, thus protecting mitochondrial function against DOX-induced cardiac injury. Furthermore, FSTL1 treatment protected the contractile properties of adult cardiomyocytes against DOX-induced injury in vitro . Furthermore, carbonyl cyanide m-chlorophenylhydrazone, a mitophagy inducer, impaired the protective effects of FSTL1 in DOX-treated H9c2 cardiomyocytes. In conclusion, these results show that FSTL1 is a novel therapeutic agent against DOX-induced cardiotoxicity that improves mitochondrial function and decreases mitophagy.</description><identifier>ISSN: 0300-8177</identifier><identifier>ISSN: 1573-4919</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-024-04955-9</identifier><identifier>PMID: 38696001</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cancer Research ; Carbonyl compounds ; Carbonyls ; Cardiology ; Cardiomyocytes ; Cardiomyopathy ; Cardiotoxicity ; Caspase-3 ; Congestive heart failure ; Coronary artery disease ; Doxorubicin ; Fibrosis ; Follistatin ; Health services ; Heart diseases ; Injury prevention ; Ischemia ; Life Sciences ; Matrix protein ; Medical Biochemistry ; Methionine ; Mitochondria ; Mitophagy ; Molecular modelling ; Muscle contraction ; Myocardial infarction ; Pathogenesis ; Pharmacology ; Proteins ; Reductases ; Reperfusion</subject><ispartof>Molecular and cellular biochemistry, 2024-07, Vol.479 (7), p.1817-1831</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-3ac88e79a385434044c84bb54253dce5ef197fadc89392a0be0980327f3da4e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11010-024-04955-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11010-024-04955-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38696001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Linhe</creatorcontrib><creatorcontrib>Shao, Yalan</creatorcontrib><creatorcontrib>Wang, Nisha</creatorcontrib><creatorcontrib>Xiong, Xiang</creatorcontrib><creatorcontrib>Zhai, Mengen</creatorcontrib><creatorcontrib>Tang, Jiayou</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Yang, Lifang</creatorcontrib><title>Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>Mol Cell Biochem</addtitle><description>Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure. However, its role in DOX-induced cardiomyopathy is unclear. Therefore, the present study investigated whether administering recombinant FSTL1 could mitigate DOX-induced cardiomyopathy and clarified the underlying molecular mechanisms. FSTL1 treatment attenuated DOX-induced cardiac dysfunction, cardiac fibrosis, and cellular apoptosis by inhibiting excess mitochondrial matrix protein methionine sulfoxide reductase B2 (MsrB2)-mediated mitophagy. Furthermore, FSTL1 administration reduced the expression of apoptotic proteins, including MsrB2, Bax, caspase 3, mitochondrial Parkin, and LC3-II, increased myocardial ATP content, and decreased cardiac malondialdehyde levels, thus protecting mitochondrial function against DOX-induced cardiac injury. Furthermore, FSTL1 treatment protected the contractile properties of adult cardiomyocytes against DOX-induced injury in vitro . Furthermore, carbonyl cyanide m-chlorophenylhydrazone, a mitophagy inducer, impaired the protective effects of FSTL1 in DOX-treated H9c2 cardiomyocytes. In conclusion, these results show that FSTL1 is a novel therapeutic agent against DOX-induced cardiotoxicity that improves mitochondrial function and decreases mitophagy.</description><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Cardiotoxicity</subject><subject>Caspase-3</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Doxorubicin</subject><subject>Fibrosis</subject><subject>Follistatin</subject><subject>Health services</subject><subject>Heart diseases</subject><subject>Injury prevention</subject><subject>Ischemia</subject><subject>Life Sciences</subject><subject>Matrix protein</subject><subject>Medical Biochemistry</subject><subject>Methionine</subject><subject>Mitochondria</subject><subject>Mitophagy</subject><subject>Molecular modelling</subject><subject>Muscle contraction</subject><subject>Myocardial infarction</subject><subject>Pathogenesis</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Reductases</subject><subject>Reperfusion</subject><issn>0300-8177</issn><issn>1573-4919</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvFSEUhYnR2NfqH3BhSNy4QS8D8waW2lhr0sZNuyYM3HmPOjM8gUk6_17qq5q46AZI-M65cA4hbzh84ADdx8w5cGDQSAZSty3Tz8iGt51gUnP9nGxAADDFu-6EnOZ8B5UGzl-SE6G2elvPGxIv4jiGXGwJMxvDD6SHFAuGmXJqS8F5sQUz9fE-pqUPrlJh9otDT51NPsRpjQdb9ivtVxrmfehDddrR65w-N2xCH6re0ymUeNjb3fqKvBjsmPH1435Gbi--3JxfsqvvX7-df7piTjTbwoR1SmGnrVCtFBKkdEr2fSubVniHLQ5cd4P1TmmhGws9glYgmm4Q3koU4oy8P_rW7_xcMBczhexwHO2McclGQAu8UzWOir77D72LS5rr6yqlGuB11ZVqjpRLMeeEgzmkMNm0Gg7moQ5zrMPUOszvOsyD6O2j9dLXLP5K_uRfAXEEcr2ad5j-zX7C9hfbPZZc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lu, Linhe</creator><creator>Shao, Yalan</creator><creator>Wang, Nisha</creator><creator>Xiong, Xiang</creator><creator>Zhai, Mengen</creator><creator>Tang, Jiayou</creator><creator>Liu, Yang</creator><creator>Yang, Jian</creator><creator>Yang, Lifang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20240701</creationdate><title>Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy</title><author>Lu, Linhe ; Shao, Yalan ; Wang, Nisha ; Xiong, Xiang ; Zhai, Mengen ; Tang, Jiayou ; Liu, Yang ; Yang, Jian ; Yang, Lifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-3ac88e79a385434044c84bb54253dce5ef197fadc89392a0be0980327f3da4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Cardiotoxicity</topic><topic>Caspase-3</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Doxorubicin</topic><topic>Fibrosis</topic><topic>Follistatin</topic><topic>Health services</topic><topic>Heart diseases</topic><topic>Injury prevention</topic><topic>Ischemia</topic><topic>Life Sciences</topic><topic>Matrix protein</topic><topic>Medical Biochemistry</topic><topic>Methionine</topic><topic>Mitochondria</topic><topic>Mitophagy</topic><topic>Molecular modelling</topic><topic>Muscle contraction</topic><topic>Myocardial infarction</topic><topic>Pathogenesis</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Reductases</topic><topic>Reperfusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Linhe</creatorcontrib><creatorcontrib>Shao, Yalan</creatorcontrib><creatorcontrib>Wang, Nisha</creatorcontrib><creatorcontrib>Xiong, Xiang</creatorcontrib><creatorcontrib>Zhai, Mengen</creatorcontrib><creatorcontrib>Tang, Jiayou</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Yang, Lifang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Linhe</au><au>Shao, Yalan</au><au>Wang, Nisha</au><au>Xiong, Xiang</au><au>Zhai, Mengen</au><au>Tang, Jiayou</au><au>Liu, Yang</au><au>Yang, Jian</au><au>Yang, Lifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><addtitle>Mol Cell Biochem</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>479</volume><issue>7</issue><spage>1817</spage><epage>1831</epage><pages>1817-1831</pages><issn>0300-8177</issn><issn>1573-4919</issn><eissn>1573-4919</eissn><abstract>Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure. However, its role in DOX-induced cardiomyopathy is unclear. Therefore, the present study investigated whether administering recombinant FSTL1 could mitigate DOX-induced cardiomyopathy and clarified the underlying molecular mechanisms. FSTL1 treatment attenuated DOX-induced cardiac dysfunction, cardiac fibrosis, and cellular apoptosis by inhibiting excess mitochondrial matrix protein methionine sulfoxide reductase B2 (MsrB2)-mediated mitophagy. Furthermore, FSTL1 administration reduced the expression of apoptotic proteins, including MsrB2, Bax, caspase 3, mitochondrial Parkin, and LC3-II, increased myocardial ATP content, and decreased cardiac malondialdehyde levels, thus protecting mitochondrial function against DOX-induced cardiac injury. Furthermore, FSTL1 treatment protected the contractile properties of adult cardiomyocytes against DOX-induced injury in vitro . Furthermore, carbonyl cyanide m-chlorophenylhydrazone, a mitophagy inducer, impaired the protective effects of FSTL1 in DOX-treated H9c2 cardiomyocytes. In conclusion, these results show that FSTL1 is a novel therapeutic agent against DOX-induced cardiotoxicity that improves mitochondrial function and decreases mitophagy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38696001</pmid><doi>10.1007/s11010-024-04955-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-8177
ispartof Molecular and cellular biochemistry, 2024-07, Vol.479 (7), p.1817-1831
issn 0300-8177
1573-4919
1573-4919
language eng
recordid cdi_proquest_miscellaneous_3050178011
source SpringerNature Journals
subjects Apoptosis
Biochemistry
Biomedical and Life Sciences
Cancer Research
Carbonyl compounds
Carbonyls
Cardiology
Cardiomyocytes
Cardiomyopathy
Cardiotoxicity
Caspase-3
Congestive heart failure
Coronary artery disease
Doxorubicin
Fibrosis
Follistatin
Health services
Heart diseases
Injury prevention
Ischemia
Life Sciences
Matrix protein
Medical Biochemistry
Methionine
Mitochondria
Mitophagy
Molecular modelling
Muscle contraction
Myocardial infarction
Pathogenesis
Pharmacology
Proteins
Reductases
Reperfusion
title Follistatin-like protein 1 attenuates doxorubicin-induced cardiomyopathy by inhibiting MsrB2-mediated mitophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Follistatin-like%20protein%201%20attenuates%20doxorubicin-induced%20cardiomyopathy%20by%20inhibiting%20MsrB2-mediated%20mitophagy&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Lu,%20Linhe&rft.date=2024-07-01&rft.volume=479&rft.issue=7&rft.spage=1817&rft.epage=1831&rft.pages=1817-1831&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-024-04955-9&rft_dat=%3Cproquest_cross%3E3050178011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082013089&rft_id=info:pmid/38696001&rfr_iscdi=true