Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO2 and Perovskite via Interfacial Modification

In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO2) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (19), p.24748-24759
Hauptverfasser: Shen, Jinliang, Ge, Xiang, Ge, Qing, Li, Na, Wang, Yuhang, Liu, Xudong, Tao, Junlei, He, Tingwei, Yang, Shaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24759
container_issue 19
container_start_page 24748
container_title ACS applied materials & interfaces
container_volume 16
creator Shen, Jinliang
Ge, Xiang
Ge, Qing
Li, Na
Wang, Yuhang
Liu, Xudong
Tao, Junlei
He, Tingwei
Yang, Shaopeng
description In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO2) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite, and easy low-temperature fabrication, SnO2 is one of the most effective ETL materials. However, the SnO2 material as an ETL has its limitations. For example, SnO2 films prepared by low-temperature spin-coating contain a large number of oxygen vacancies, resulting in energy loss and high open-circuit voltage (V OC) loss. In addition, the crystal quality of perovskites is closely related to the substrate, and the disordered crystal orientation will lead to ion migration, resulting in a large number of uncoordinated Pb2+ defects. Therefore, interface optimization is essential to improve the efficiency and stability of the PSC. In this work, 2-(5-chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol (CBTBC) was introduced for ETL modification. On the one hand, the hydroxyl group of CBTBC forms a Lewis mixture with the Sn atom, which reduces the oxygen vacancy defect and prevents nonradiative recombination. On the other hand, the SnO2/CBTBC interface can effectively improve the crystal orientation of perovskite by influencing the crystallization kinetics of perovskite, and the nitrogen element in CBTBC can effectively passivate the uncoordinated Pb2+ defects at the SnO2/perovskite interface. Finally, the prevailing PCE of PSC (1.68 eV) modified by CBTBC was 20.34% (V OC = 1.214 V, J SC = 20.49 mA/cm2, FF = 82.49%).
doi_str_mv 10.1021/acsami.4c03595
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050177043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050177043</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-dc5603be52928fa982567798c57b0b021d34d203ae9792df90e74a0fd48205af3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKtb11mK0JrJpTNZSvFSqLRQXQ9nMommziQ6yRT6FL6y6QVxdQLn_w75P4SuMzLOCM3uQAVo7ZgrwoQUJ2iQSc5HBRX09O_N-Tm6CGFNyIRRIgboZ9Z-dX6jW-0i9gYvP3z0G99EsAovdWd814JTer_TKRk-bdR45Rvo8FQ3TcDVFq-2TnfvNsQEvfi6byBa73bMyi0oBlf_hzcW8MzFdByUhWZHWGPVnrlEZwaaoK-Oc4jeHh9ep8-j-eJpNr2fj4BSFke1EhPCKi2opIUBmVpO8lwWSuQVqZKNmvGaEgZa5pLWRhKdcyCm5kWqDYYN0c3hbmr_3esQy9YGlfqA074PJSOCZHlOOEvR20M0CS7Xvu9c-liZkXJnvTxYL4_W2S9Vn3jM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050177043</pqid></control><display><type>article</type><title>Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO2 and Perovskite via Interfacial Modification</title><source>American Chemical Society Journals</source><creator>Shen, Jinliang ; Ge, Xiang ; Ge, Qing ; Li, Na ; Wang, Yuhang ; Liu, Xudong ; Tao, Junlei ; He, Tingwei ; Yang, Shaopeng</creator><creatorcontrib>Shen, Jinliang ; Ge, Xiang ; Ge, Qing ; Li, Na ; Wang, Yuhang ; Liu, Xudong ; Tao, Junlei ; He, Tingwei ; Yang, Shaopeng</creatorcontrib><description>In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO2) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite, and easy low-temperature fabrication, SnO2 is one of the most effective ETL materials. However, the SnO2 material as an ETL has its limitations. For example, SnO2 films prepared by low-temperature spin-coating contain a large number of oxygen vacancies, resulting in energy loss and high open-circuit voltage (V OC) loss. In addition, the crystal quality of perovskites is closely related to the substrate, and the disordered crystal orientation will lead to ion migration, resulting in a large number of uncoordinated Pb2+ defects. Therefore, interface optimization is essential to improve the efficiency and stability of the PSC. In this work, 2-(5-chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol (CBTBC) was introduced for ETL modification. On the one hand, the hydroxyl group of CBTBC forms a Lewis mixture with the Sn atom, which reduces the oxygen vacancy defect and prevents nonradiative recombination. On the other hand, the SnO2/CBTBC interface can effectively improve the crystal orientation of perovskite by influencing the crystallization kinetics of perovskite, and the nitrogen element in CBTBC can effectively passivate the uncoordinated Pb2+ defects at the SnO2/perovskite interface. Finally, the prevailing PCE of PSC (1.68 eV) modified by CBTBC was 20.34% (V OC = 1.214 V, J SC = 20.49 mA/cm2, FF = 82.49%).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c03595</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-05, Vol.16 (19), p.24748-24759</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7326-1055 ; 0000-0002-8073-8106 ; 0000-0002-5728-4847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c03595$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c03595$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Shen, Jinliang</creatorcontrib><creatorcontrib>Ge, Xiang</creatorcontrib><creatorcontrib>Ge, Qing</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>Liu, Xudong</creatorcontrib><creatorcontrib>Tao, Junlei</creatorcontrib><creatorcontrib>He, Tingwei</creatorcontrib><creatorcontrib>Yang, Shaopeng</creatorcontrib><title>Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO2 and Perovskite via Interfacial Modification</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO2) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite, and easy low-temperature fabrication, SnO2 is one of the most effective ETL materials. However, the SnO2 material as an ETL has its limitations. For example, SnO2 films prepared by low-temperature spin-coating contain a large number of oxygen vacancies, resulting in energy loss and high open-circuit voltage (V OC) loss. In addition, the crystal quality of perovskites is closely related to the substrate, and the disordered crystal orientation will lead to ion migration, resulting in a large number of uncoordinated Pb2+ defects. Therefore, interface optimization is essential to improve the efficiency and stability of the PSC. In this work, 2-(5-chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol (CBTBC) was introduced for ETL modification. On the one hand, the hydroxyl group of CBTBC forms a Lewis mixture with the Sn atom, which reduces the oxygen vacancy defect and prevents nonradiative recombination. On the other hand, the SnO2/CBTBC interface can effectively improve the crystal orientation of perovskite by influencing the crystallization kinetics of perovskite, and the nitrogen element in CBTBC can effectively passivate the uncoordinated Pb2+ defects at the SnO2/perovskite interface. Finally, the prevailing PCE of PSC (1.68 eV) modified by CBTBC was 20.34% (V OC = 1.214 V, J SC = 20.49 mA/cm2, FF = 82.49%).</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEUhoMoWKtb11mK0JrJpTNZSvFSqLRQXQ9nMommziQ6yRT6FL6y6QVxdQLn_w75P4SuMzLOCM3uQAVo7ZgrwoQUJ2iQSc5HBRX09O_N-Tm6CGFNyIRRIgboZ9Z-dX6jW-0i9gYvP3z0G99EsAovdWd814JTer_TKRk-bdR45Rvo8FQ3TcDVFq-2TnfvNsQEvfi6byBa73bMyi0oBlf_hzcW8MzFdByUhWZHWGPVnrlEZwaaoK-Oc4jeHh9ep8-j-eJpNr2fj4BSFke1EhPCKi2opIUBmVpO8lwWSuQVqZKNmvGaEgZa5pLWRhKdcyCm5kWqDYYN0c3hbmr_3esQy9YGlfqA074PJSOCZHlOOEvR20M0CS7Xvu9c-liZkXJnvTxYL4_W2S9Vn3jM</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Shen, Jinliang</creator><creator>Ge, Xiang</creator><creator>Ge, Qing</creator><creator>Li, Na</creator><creator>Wang, Yuhang</creator><creator>Liu, Xudong</creator><creator>Tao, Junlei</creator><creator>He, Tingwei</creator><creator>Yang, Shaopeng</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7326-1055</orcidid><orcidid>https://orcid.org/0000-0002-8073-8106</orcidid><orcidid>https://orcid.org/0000-0002-5728-4847</orcidid></search><sort><creationdate>20240515</creationdate><title>Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO2 and Perovskite via Interfacial Modification</title><author>Shen, Jinliang ; Ge, Xiang ; Ge, Qing ; Li, Na ; Wang, Yuhang ; Liu, Xudong ; Tao, Junlei ; He, Tingwei ; Yang, Shaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-dc5603be52928fa982567798c57b0b021d34d203ae9792df90e74a0fd48205af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jinliang</creatorcontrib><creatorcontrib>Ge, Xiang</creatorcontrib><creatorcontrib>Ge, Qing</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>Liu, Xudong</creatorcontrib><creatorcontrib>Tao, Junlei</creatorcontrib><creatorcontrib>He, Tingwei</creatorcontrib><creatorcontrib>Yang, Shaopeng</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jinliang</au><au>Ge, Xiang</au><au>Ge, Qing</au><au>Li, Na</au><au>Wang, Yuhang</au><au>Liu, Xudong</au><au>Tao, Junlei</au><au>He, Tingwei</au><au>Yang, Shaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO2 and Perovskite via Interfacial Modification</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>24748</spage><epage>24759</epage><pages>24748-24759</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO2) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite, and easy low-temperature fabrication, SnO2 is one of the most effective ETL materials. However, the SnO2 material as an ETL has its limitations. For example, SnO2 films prepared by low-temperature spin-coating contain a large number of oxygen vacancies, resulting in energy loss and high open-circuit voltage (V OC) loss. In addition, the crystal quality of perovskites is closely related to the substrate, and the disordered crystal orientation will lead to ion migration, resulting in a large number of uncoordinated Pb2+ defects. Therefore, interface optimization is essential to improve the efficiency and stability of the PSC. In this work, 2-(5-chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol (CBTBC) was introduced for ETL modification. On the one hand, the hydroxyl group of CBTBC forms a Lewis mixture with the Sn atom, which reduces the oxygen vacancy defect and prevents nonradiative recombination. On the other hand, the SnO2/CBTBC interface can effectively improve the crystal orientation of perovskite by influencing the crystallization kinetics of perovskite, and the nitrogen element in CBTBC can effectively passivate the uncoordinated Pb2+ defects at the SnO2/perovskite interface. Finally, the prevailing PCE of PSC (1.68 eV) modified by CBTBC was 20.34% (V OC = 1.214 V, J SC = 20.49 mA/cm2, FF = 82.49%).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c03595</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7326-1055</orcidid><orcidid>https://orcid.org/0000-0002-8073-8106</orcidid><orcidid>https://orcid.org/0000-0002-5728-4847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-05, Vol.16 (19), p.24748-24759
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3050177043
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO2 and Perovskite via Interfacial Modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Photovoltaic%20Performance%20of%20Perovskite%20Solar%20Cells%20by%20Synergistic%20Modulation%20of%20SnO2%20and%20Perovskite%20via%20Interfacial%20Modification&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shen,%20Jinliang&rft.date=2024-05-15&rft.volume=16&rft.issue=19&rft.spage=24748&rft.epage=24759&rft.pages=24748-24759&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c03595&rft_dat=%3Cproquest_acs_j%3E3050177043%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050177043&rft_id=info:pmid/&rfr_iscdi=true