Memristive Switching Mechanism in Colloidal InP/ZnSe/ZnS Quantum Dot-Based Synaptic Devices for Neuromorphic Computing

Quantum dots (QDs) have garnered a significant amount of attention as promising memristive materials owing to their size-dependent tunable bandgap, structural stability, and high level of applicability for neuromorphic computing. Despite these advantageous properties, the development of QD-based mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-05, Vol.24 (19), p.5855-5861
Hauptverfasser: Baek, Geun Woo, Kim, Yeon Jun, Kim, Jaekwon, Chang, Jun Hyuk, Kim, Uhjin, An, Soobin, Park, Junhyeong, Yu, Sunkyu, Bae, Wan Ki, Lim, Jaehoon, Lee, Soo-Yeon, Kwak, Jeonghun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum dots (QDs) have garnered a significant amount of attention as promising memristive materials owing to their size-dependent tunable bandgap, structural stability, and high level of applicability for neuromorphic computing. Despite these advantageous properties, the development of QD-based memristors has been hindered by challenges in understanding and adjusting the resistive switching (RS) behavior of QDs. Herein, we propose three types of InP/ZnSe/ZnS QD-based memristors to elucidate the RS mechanism, employing a thin poly­(methyl methacrylate) layer. This approach not only allows us to identify which carriers (electron or hole) are trapped within the QD layer but also successfully demonstrates QD-based synaptic devices. Furthermore, to utilize the QD memristor as a synapse, long-term potentiation/depression (LTP/LTD) characteristics are measured, resulting in a low nonlinearity of LTP/LTD at 0.1/1. On the basis of the LTP/LTD characteristics, single-layer perceptron simulations were performed using the Extended Modified National Institute of Standards and Technology, verifying a maximum recognition rate of 91.46%.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.4c01083