Adapting vision–language AI models to cardiology tasks

Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2024-05, Vol.30 (5), p.1245-1246
1. Verfasser: Arnaout, Rima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1246
container_issue 5
container_start_page 1245
container_title Nature medicine
container_volume 30
creator Arnaout, Rima
description Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.
doi_str_mv 10.1038/s41591-024-02956-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050176662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057548228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a7c2fc2bb3ff32f776821aa177042d4dc9cc942e9d80e41e479daf07bd5a39463</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbfmshwGLwMDbhTchTRJS8dOMzatMDvfwTf0SczYUcGFi5AD5zt_Tj4AThG8RJCIq0BRJlEKMY1HZixFe2CMMhoLDp_2Yw25SEXsjMBRCEsIIYGZPAQjIpgkmIoxEFOr113VlMlrFSrffLy917ope126ZDpPVt66OiSdT4xubeVrX26STofncAwOCl0Hd7K7J-Dx5vphdpcu7m_ns-kiNQSzLtXc4MLgPCdFQXDBORMYaY04hxRbao00RlLspBXQUeQol1YXkOc200RSRibgYshdt_6ld6FTqyoYV8ctne-Dij-CiDPGcETP_6BL37dN3G5L8YwKjEWk8ECZ1ofQukKt22ql241CUG29qsGril7Vl1eF4tDZLrrPV87-jHyLjAAZgBBbTena37f_if0E-KWCyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057548228</pqid></control><display><type>article</type><title>Adapting vision–language AI models to cardiology tasks</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Arnaout, Rima</creator><creatorcontrib>Arnaout, Rima</creatorcontrib><description>Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.</description><identifier>ISSN: 1078-8956</identifier><identifier>ISSN: 1546-170X</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-024-02956-1</identifier><identifier>PMID: 38693248</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 692/700/1421/1860/1445 ; Artificial Intelligence - trends ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cardiology ; Cardiology - trends ; Classification ; Ejection fraction ; Humans ; Infectious Diseases ; Language ; Machine learning ; Measurement techniques ; Medical imaging ; Medicine ; Metabolic Diseases ; Molecular Medicine ; Neurosciences ; News &amp; Views ; news-and-views ; Pacemakers ; Preprints ; Ultrasonic imaging</subject><ispartof>Nature medicine, 2024-05, Vol.30 (5), p.1245-1246</ispartof><rights>Springer Nature America, Inc. 2024</rights><rights>Springer Nature America, Inc. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a7c2fc2bb3ff32f776821aa177042d4dc9cc942e9d80e41e479daf07bd5a39463</cites><orcidid>0000-0002-7134-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38693248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnaout, Rima</creatorcontrib><title>Adapting vision–language AI models to cardiology tasks</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.</description><subject>631/114/1305</subject><subject>692/700/1421/1860/1445</subject><subject>Artificial Intelligence - trends</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cardiology - trends</subject><subject>Classification</subject><subject>Ejection fraction</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Language</subject><subject>Machine learning</subject><subject>Measurement techniques</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>News &amp; Views</subject><subject>news-and-views</subject><subject>Pacemakers</subject><subject>Preprints</subject><subject>Ultrasonic imaging</subject><issn>1078-8956</issn><issn>1546-170X</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbfmshwGLwMDbhTchTRJS8dOMzatMDvfwTf0SczYUcGFi5AD5zt_Tj4AThG8RJCIq0BRJlEKMY1HZixFe2CMMhoLDp_2Yw25SEXsjMBRCEsIIYGZPAQjIpgkmIoxEFOr113VlMlrFSrffLy917ope126ZDpPVt66OiSdT4xubeVrX26STofncAwOCl0Hd7K7J-Dx5vphdpcu7m_ns-kiNQSzLtXc4MLgPCdFQXDBORMYaY04hxRbao00RlLspBXQUeQol1YXkOc200RSRibgYshdt_6ld6FTqyoYV8ctne-Dij-CiDPGcETP_6BL37dN3G5L8YwKjEWk8ECZ1ofQukKt22ql241CUG29qsGril7Vl1eF4tDZLrrPV87-jHyLjAAZgBBbTena37f_if0E-KWCyQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Arnaout, Rima</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7134-0040</orcidid></search><sort><creationdate>20240501</creationdate><title>Adapting vision–language AI models to cardiology tasks</title><author>Arnaout, Rima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a7c2fc2bb3ff32f776821aa177042d4dc9cc942e9d80e41e479daf07bd5a39463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/1305</topic><topic>692/700/1421/1860/1445</topic><topic>Artificial Intelligence - trends</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cardiology - trends</topic><topic>Classification</topic><topic>Ejection fraction</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Language</topic><topic>Machine learning</topic><topic>Measurement techniques</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>News &amp; Views</topic><topic>news-and-views</topic><topic>Pacemakers</topic><topic>Preprints</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnaout, Rima</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnaout, Rima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapting vision–language AI models to cardiology tasks</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>1245</spage><epage>1246</epage><pages>1245-1246</pages><issn>1078-8956</issn><issn>1546-170X</issn><eissn>1546-170X</eissn><abstract>Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38693248</pmid><doi>10.1038/s41591-024-02956-1</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-7134-0040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2024-05, Vol.30 (5), p.1245-1246
issn 1078-8956
1546-170X
1546-170X
language eng
recordid cdi_proquest_miscellaneous_3050176662
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 631/114/1305
692/700/1421/1860/1445
Artificial Intelligence - trends
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cardiology
Cardiology - trends
Classification
Ejection fraction
Humans
Infectious Diseases
Language
Machine learning
Measurement techniques
Medical imaging
Medicine
Metabolic Diseases
Molecular Medicine
Neurosciences
News & Views
news-and-views
Pacemakers
Preprints
Ultrasonic imaging
title Adapting vision–language AI models to cardiology tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapting%20vision%E2%80%93language%20AI%20models%20to%20cardiology%20tasks&rft.jtitle=Nature%20medicine&rft.au=Arnaout,%20Rima&rft.date=2024-05-01&rft.volume=30&rft.issue=5&rft.spage=1245&rft.epage=1246&rft.pages=1245-1246&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-024-02956-1&rft_dat=%3Cproquest_cross%3E3057548228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057548228&rft_id=info:pmid/38693248&rfr_iscdi=true