Adapting vision–language AI models to cardiology tasks
Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.
Gespeichert in:
Veröffentlicht in: | Nature medicine 2024-05, Vol.30 (5), p.1245-1246 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1246 |
---|---|
container_issue | 5 |
container_start_page | 1245 |
container_title | Nature medicine |
container_volume | 30 |
creator | Arnaout, Rima |
description | Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans. |
doi_str_mv | 10.1038/s41591-024-02956-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050176662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057548228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a7c2fc2bb3ff32f776821aa177042d4dc9cc942e9d80e41e479daf07bd5a39463</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbfmshwGLwMDbhTchTRJS8dOMzatMDvfwTf0SczYUcGFi5AD5zt_Tj4AThG8RJCIq0BRJlEKMY1HZixFe2CMMhoLDp_2Yw25SEXsjMBRCEsIIYGZPAQjIpgkmIoxEFOr113VlMlrFSrffLy917ope126ZDpPVt66OiSdT4xubeVrX26STofncAwOCl0Hd7K7J-Dx5vphdpcu7m_ns-kiNQSzLtXc4MLgPCdFQXDBORMYaY04hxRbao00RlLspBXQUeQol1YXkOc200RSRibgYshdt_6ld6FTqyoYV8ctne-Dij-CiDPGcETP_6BL37dN3G5L8YwKjEWk8ECZ1ofQukKt22ql241CUG29qsGril7Vl1eF4tDZLrrPV87-jHyLjAAZgBBbTena37f_if0E-KWCyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057548228</pqid></control><display><type>article</type><title>Adapting vision–language AI models to cardiology tasks</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Arnaout, Rima</creator><creatorcontrib>Arnaout, Rima</creatorcontrib><description>Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.</description><identifier>ISSN: 1078-8956</identifier><identifier>ISSN: 1546-170X</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-024-02956-1</identifier><identifier>PMID: 38693248</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 692/700/1421/1860/1445 ; Artificial Intelligence - trends ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cardiology ; Cardiology - trends ; Classification ; Ejection fraction ; Humans ; Infectious Diseases ; Language ; Machine learning ; Measurement techniques ; Medical imaging ; Medicine ; Metabolic Diseases ; Molecular Medicine ; Neurosciences ; News & Views ; news-and-views ; Pacemakers ; Preprints ; Ultrasonic imaging</subject><ispartof>Nature medicine, 2024-05, Vol.30 (5), p.1245-1246</ispartof><rights>Springer Nature America, Inc. 2024</rights><rights>Springer Nature America, Inc. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a7c2fc2bb3ff32f776821aa177042d4dc9cc942e9d80e41e479daf07bd5a39463</cites><orcidid>0000-0002-7134-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38693248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnaout, Rima</creatorcontrib><title>Adapting vision–language AI models to cardiology tasks</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.</description><subject>631/114/1305</subject><subject>692/700/1421/1860/1445</subject><subject>Artificial Intelligence - trends</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cardiology - trends</subject><subject>Classification</subject><subject>Ejection fraction</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Language</subject><subject>Machine learning</subject><subject>Measurement techniques</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>News & Views</subject><subject>news-and-views</subject><subject>Pacemakers</subject><subject>Preprints</subject><subject>Ultrasonic imaging</subject><issn>1078-8956</issn><issn>1546-170X</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai6k4MZNNbfmshwGLwMDbhTchTRJS8dOMzatMDvfwTf0SczYUcGFi5AD5zt_Tj4AThG8RJCIq0BRJlEKMY1HZixFe2CMMhoLDp_2Yw25SEXsjMBRCEsIIYGZPAQjIpgkmIoxEFOr113VlMlrFSrffLy917ope126ZDpPVt66OiSdT4xubeVrX26STofncAwOCl0Hd7K7J-Dx5vphdpcu7m_ns-kiNQSzLtXc4MLgPCdFQXDBORMYaY04hxRbao00RlLspBXQUeQol1YXkOc200RSRibgYshdt_6ld6FTqyoYV8ctne-Dij-CiDPGcETP_6BL37dN3G5L8YwKjEWk8ECZ1ofQukKt22ql241CUG29qsGril7Vl1eF4tDZLrrPV87-jHyLjAAZgBBbTena37f_if0E-KWCyQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Arnaout, Rima</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7134-0040</orcidid></search><sort><creationdate>20240501</creationdate><title>Adapting vision–language AI models to cardiology tasks</title><author>Arnaout, Rima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a7c2fc2bb3ff32f776821aa177042d4dc9cc942e9d80e41e479daf07bd5a39463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/1305</topic><topic>692/700/1421/1860/1445</topic><topic>Artificial Intelligence - trends</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cardiology - trends</topic><topic>Classification</topic><topic>Ejection fraction</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Language</topic><topic>Machine learning</topic><topic>Measurement techniques</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>News & Views</topic><topic>news-and-views</topic><topic>Pacemakers</topic><topic>Preprints</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnaout, Rima</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnaout, Rima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapting vision–language AI models to cardiology tasks</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>1245</spage><epage>1246</epage><pages>1245-1246</pages><issn>1078-8956</issn><issn>1546-170X</issn><eissn>1546-170X</eissn><abstract>Vision–language models can be trained to read cardiac ultrasound images with implications for improving clinical workflows, but additional development and validation will be required before such models can replace humans.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38693248</pmid><doi>10.1038/s41591-024-02956-1</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-7134-0040</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2024-05, Vol.30 (5), p.1245-1246 |
issn | 1078-8956 1546-170X 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_3050176662 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | 631/114/1305 692/700/1421/1860/1445 Artificial Intelligence - trends Biomedical and Life Sciences Biomedicine Cancer Research Cardiology Cardiology - trends Classification Ejection fraction Humans Infectious Diseases Language Machine learning Measurement techniques Medical imaging Medicine Metabolic Diseases Molecular Medicine Neurosciences News & Views news-and-views Pacemakers Preprints Ultrasonic imaging |
title | Adapting vision–language AI models to cardiology tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapting%20vision%E2%80%93language%20AI%20models%20to%20cardiology%20tasks&rft.jtitle=Nature%20medicine&rft.au=Arnaout,%20Rima&rft.date=2024-05-01&rft.volume=30&rft.issue=5&rft.spage=1245&rft.epage=1246&rft.pages=1245-1246&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-024-02956-1&rft_dat=%3Cproquest_cross%3E3057548228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057548228&rft_id=info:pmid/38693248&rfr_iscdi=true |