Mitochondrial transfer mediates endothelial cell engraftment through mitophagy

Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-05, Vol.629 (8012), p.660-668
Hauptverfasser: Lin, Ruei-Zeng, Im, Gwang-Bum, Luo, Allen Chilun, Zhu, Yonglin, Hong, Xuechong, Neumeyer, Joseph, Tang, Hong-Wen, Perrimon, Norbert, Melero-Martin, Juan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 8012
container_start_page 660
container_title Nature (London)
container_volume 629
creator Lin, Ruei-Zeng
Im, Gwang-Bum
Luo, Allen Chilun
Zhu, Yonglin
Hong, Xuechong
Neumeyer, Joseph
Tang, Hong-Wen
Perrimon, Norbert
Melero-Martin, Juan M.
description Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated 2 , 3 . The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy. Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.
doi_str_mv 10.1038/s41586-024-07340-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050176653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050176653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtL4Di-ZkQVN6nAArPlJs6lyqXYztC3xyEFJAYmS-d85_evD6FzDNcYiLxxFDPJY0hoDIJQiOEAzTEVPKZcikM0B0hkDJLwGTpxbgMADAt6jGZE8pQkTM7Ry3Pt-6zqu9zWuom81Z0rjI1ak9faGxeZLu99ZZpxm5mmCYPS6sK3pvORr2w_lFXUhpBtpcvdKToqdOPM2f5doPf7u7flY7x6fXha3q7ijAjm45wmuQAikoKmoBOdM615xrK1yDnXsBasMKGpzDRmCQPCmcGpBk0xFCbPDFmgqyl3a_uPwTiv2tqN9XRn-sEpAgyw4JyRgF7-QTf9YLvQbqS4BCpTHqhkojLbO2dNoba2brXdKQxqtK0m2yrYVl-2FYSji330sA7Cfk6-9QaATIALq6409vfvf2I_AdBtiwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056804896</pqid></control><display><type>article</type><title>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lin, Ruei-Zeng ; Im, Gwang-Bum ; Luo, Allen Chilun ; Zhu, Yonglin ; Hong, Xuechong ; Neumeyer, Joseph ; Tang, Hong-Wen ; Perrimon, Norbert ; Melero-Martin, Juan M.</creator><creatorcontrib>Lin, Ruei-Zeng ; Im, Gwang-Bum ; Luo, Allen Chilun ; Zhu, Yonglin ; Hong, Xuechong ; Neumeyer, Joseph ; Tang, Hong-Wen ; Perrimon, Norbert ; Melero-Martin, Juan M.</creatorcontrib><description>Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated 2 , 3 . The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy. Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07340-0</identifier><identifier>PMID: 38693258</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 38 ; 59 ; 631/61/2296 ; 631/80/39/2348 ; 692/308/575 ; Ablation ; Animals ; Autophagosomes - metabolism ; Bioenergetics ; Blood vessels ; Cell therapy ; Cell- and Tissue-Based Therapy - methods ; Cellular stress response ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelial Cells - transplantation ; Energy Metabolism ; Heart attacks ; Human Umbilical Vein Endothelial Cells - metabolism ; Humanities and Social Sciences ; Humans ; Internalization ; Ischemia ; Ischemia - metabolism ; Ischemia - therapy ; Male ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Nude ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - transplantation ; Mitophagy ; multidisciplinary ; Myocardial infarction ; Nanotechnology ; Nanotubes ; Phagosomes ; Protein Kinases - deficiency ; Protein Kinases - metabolism ; Science ; Science (multidisciplinary) ; Stromal cells ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Nature (London), 2024-05, Vol.629 (8012), p.660-668</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 15, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</citedby><cites>FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</cites><orcidid>0000-0001-6932-2946 ; 0000-0001-6995-6586 ; 0000-0002-8347-9891 ; 0000-0001-7542-472X ; 0000-0002-4689-8149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07340-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07340-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38693258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Ruei-Zeng</creatorcontrib><creatorcontrib>Im, Gwang-Bum</creatorcontrib><creatorcontrib>Luo, Allen Chilun</creatorcontrib><creatorcontrib>Zhu, Yonglin</creatorcontrib><creatorcontrib>Hong, Xuechong</creatorcontrib><creatorcontrib>Neumeyer, Joseph</creatorcontrib><creatorcontrib>Tang, Hong-Wen</creatorcontrib><creatorcontrib>Perrimon, Norbert</creatorcontrib><creatorcontrib>Melero-Martin, Juan M.</creatorcontrib><title>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated 2 , 3 . The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy. Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.</description><subject>13</subject><subject>14</subject><subject>38</subject><subject>59</subject><subject>631/61/2296</subject><subject>631/80/39/2348</subject><subject>692/308/575</subject><subject>Ablation</subject><subject>Animals</subject><subject>Autophagosomes - metabolism</subject><subject>Bioenergetics</subject><subject>Blood vessels</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Cellular stress response</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - transplantation</subject><subject>Energy Metabolism</subject><subject>Heart attacks</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Internalization</subject><subject>Ischemia</subject><subject>Ischemia - metabolism</subject><subject>Ischemia - therapy</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - transplantation</subject><subject>Mitophagy</subject><subject>multidisciplinary</subject><subject>Myocardial infarction</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Phagosomes</subject><subject>Protein Kinases - deficiency</subject><subject>Protein Kinases - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stromal cells</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtL4Di-ZkQVN6nAArPlJs6lyqXYztC3xyEFJAYmS-d85_evD6FzDNcYiLxxFDPJY0hoDIJQiOEAzTEVPKZcikM0B0hkDJLwGTpxbgMADAt6jGZE8pQkTM7Ry3Pt-6zqu9zWuom81Z0rjI1ak9faGxeZLu99ZZpxm5mmCYPS6sK3pvORr2w_lFXUhpBtpcvdKToqdOPM2f5doPf7u7flY7x6fXha3q7ijAjm45wmuQAikoKmoBOdM615xrK1yDnXsBasMKGpzDRmCQPCmcGpBk0xFCbPDFmgqyl3a_uPwTiv2tqN9XRn-sEpAgyw4JyRgF7-QTf9YLvQbqS4BCpTHqhkojLbO2dNoba2brXdKQxqtK0m2yrYVl-2FYSji330sA7Cfk6-9QaATIALq6409vfvf2I_AdBtiwo</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Lin, Ruei-Zeng</creator><creator>Im, Gwang-Bum</creator><creator>Luo, Allen Chilun</creator><creator>Zhu, Yonglin</creator><creator>Hong, Xuechong</creator><creator>Neumeyer, Joseph</creator><creator>Tang, Hong-Wen</creator><creator>Perrimon, Norbert</creator><creator>Melero-Martin, Juan M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6932-2946</orcidid><orcidid>https://orcid.org/0000-0001-6995-6586</orcidid><orcidid>https://orcid.org/0000-0002-8347-9891</orcidid><orcidid>https://orcid.org/0000-0001-7542-472X</orcidid><orcidid>https://orcid.org/0000-0002-4689-8149</orcidid></search><sort><creationdate>20240516</creationdate><title>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</title><author>Lin, Ruei-Zeng ; Im, Gwang-Bum ; Luo, Allen Chilun ; Zhu, Yonglin ; Hong, Xuechong ; Neumeyer, Joseph ; Tang, Hong-Wen ; Perrimon, Norbert ; Melero-Martin, Juan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13</topic><topic>14</topic><topic>38</topic><topic>59</topic><topic>631/61/2296</topic><topic>631/80/39/2348</topic><topic>692/308/575</topic><topic>Ablation</topic><topic>Animals</topic><topic>Autophagosomes - metabolism</topic><topic>Bioenergetics</topic><topic>Blood vessels</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Cellular stress response</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - transplantation</topic><topic>Energy Metabolism</topic><topic>Heart attacks</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Internalization</topic><topic>Ischemia</topic><topic>Ischemia - metabolism</topic><topic>Ischemia - therapy</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - transplantation</topic><topic>Mitophagy</topic><topic>multidisciplinary</topic><topic>Myocardial infarction</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Phagosomes</topic><topic>Protein Kinases - deficiency</topic><topic>Protein Kinases - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stromal cells</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ruei-Zeng</creatorcontrib><creatorcontrib>Im, Gwang-Bum</creatorcontrib><creatorcontrib>Luo, Allen Chilun</creatorcontrib><creatorcontrib>Zhu, Yonglin</creatorcontrib><creatorcontrib>Hong, Xuechong</creatorcontrib><creatorcontrib>Neumeyer, Joseph</creatorcontrib><creatorcontrib>Tang, Hong-Wen</creatorcontrib><creatorcontrib>Perrimon, Norbert</creatorcontrib><creatorcontrib>Melero-Martin, Juan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ruei-Zeng</au><au>Im, Gwang-Bum</au><au>Luo, Allen Chilun</au><au>Zhu, Yonglin</au><au>Hong, Xuechong</au><au>Neumeyer, Joseph</au><au>Tang, Hong-Wen</au><au>Perrimon, Norbert</au><au>Melero-Martin, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-16</date><risdate>2024</risdate><volume>629</volume><issue>8012</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated 2 , 3 . The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy. Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38693258</pmid><doi>10.1038/s41586-024-07340-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6932-2946</orcidid><orcidid>https://orcid.org/0000-0001-6995-6586</orcidid><orcidid>https://orcid.org/0000-0002-8347-9891</orcidid><orcidid>https://orcid.org/0000-0001-7542-472X</orcidid><orcidid>https://orcid.org/0000-0002-4689-8149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-05, Vol.629 (8012), p.660-668
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3050176653
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13
14
38
59
631/61/2296
631/80/39/2348
692/308/575
Ablation
Animals
Autophagosomes - metabolism
Bioenergetics
Blood vessels
Cell therapy
Cell- and Tissue-Based Therapy - methods
Cellular stress response
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - metabolism
Endothelial Cells - transplantation
Energy Metabolism
Heart attacks
Human Umbilical Vein Endothelial Cells - metabolism
Humanities and Social Sciences
Humans
Internalization
Ischemia
Ischemia - metabolism
Ischemia - therapy
Male
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mice
Mice, Nude
Mitochondria
Mitochondria - metabolism
Mitochondria - transplantation
Mitophagy
multidisciplinary
Myocardial infarction
Nanotechnology
Nanotubes
Phagosomes
Protein Kinases - deficiency
Protein Kinases - metabolism
Science
Science (multidisciplinary)
Stromal cells
Ubiquitin-Protein Ligases - deficiency
Ubiquitin-Protein Ligases - metabolism
title Mitochondrial transfer mediates endothelial cell engraftment through mitophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20transfer%20mediates%20endothelial%20cell%20engraftment%20through%20mitophagy&rft.jtitle=Nature%20(London)&rft.au=Lin,%20Ruei-Zeng&rft.date=2024-05-16&rft.volume=629&rft.issue=8012&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07340-0&rft_dat=%3Cproquest_cross%3E3050176653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056804896&rft_id=info:pmid/38693258&rfr_iscdi=true