Mitochondrial transfer mediates endothelial cell engraftment through mitophagy
Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mes...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-05, Vol.629 (8012), p.660-668 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 8012 |
container_start_page | 660 |
container_title | Nature (London) |
container_volume | 629 |
creator | Lin, Ruei-Zeng Im, Gwang-Bum Luo, Allen Chilun Zhu, Yonglin Hong, Xuechong Neumeyer, Joseph Tang, Hong-Wen Perrimon, Norbert Melero-Martin, Juan M. |
description | Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide
1
. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated
2
,
3
. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues. |
doi_str_mv | 10.1038/s41586-024-07340-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050176653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050176653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtL4Di-ZkQVN6nAArPlJs6lyqXYztC3xyEFJAYmS-d85_evD6FzDNcYiLxxFDPJY0hoDIJQiOEAzTEVPKZcikM0B0hkDJLwGTpxbgMADAt6jGZE8pQkTM7Ry3Pt-6zqu9zWuom81Z0rjI1ak9faGxeZLu99ZZpxm5mmCYPS6sK3pvORr2w_lFXUhpBtpcvdKToqdOPM2f5doPf7u7flY7x6fXha3q7ijAjm45wmuQAikoKmoBOdM615xrK1yDnXsBasMKGpzDRmCQPCmcGpBk0xFCbPDFmgqyl3a_uPwTiv2tqN9XRn-sEpAgyw4JyRgF7-QTf9YLvQbqS4BCpTHqhkojLbO2dNoba2brXdKQxqtK0m2yrYVl-2FYSji330sA7Cfk6-9QaATIALq6409vfvf2I_AdBtiwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056804896</pqid></control><display><type>article</type><title>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lin, Ruei-Zeng ; Im, Gwang-Bum ; Luo, Allen Chilun ; Zhu, Yonglin ; Hong, Xuechong ; Neumeyer, Joseph ; Tang, Hong-Wen ; Perrimon, Norbert ; Melero-Martin, Juan M.</creator><creatorcontrib>Lin, Ruei-Zeng ; Im, Gwang-Bum ; Luo, Allen Chilun ; Zhu, Yonglin ; Hong, Xuechong ; Neumeyer, Joseph ; Tang, Hong-Wen ; Perrimon, Norbert ; Melero-Martin, Juan M.</creatorcontrib><description>Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide
1
. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated
2
,
3
. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07340-0</identifier><identifier>PMID: 38693258</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 38 ; 59 ; 631/61/2296 ; 631/80/39/2348 ; 692/308/575 ; Ablation ; Animals ; Autophagosomes - metabolism ; Bioenergetics ; Blood vessels ; Cell therapy ; Cell- and Tissue-Based Therapy - methods ; Cellular stress response ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelial Cells - transplantation ; Energy Metabolism ; Heart attacks ; Human Umbilical Vein Endothelial Cells - metabolism ; Humanities and Social Sciences ; Humans ; Internalization ; Ischemia ; Ischemia - metabolism ; Ischemia - therapy ; Male ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Nude ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - transplantation ; Mitophagy ; multidisciplinary ; Myocardial infarction ; Nanotechnology ; Nanotubes ; Phagosomes ; Protein Kinases - deficiency ; Protein Kinases - metabolism ; Science ; Science (multidisciplinary) ; Stromal cells ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Nature (London), 2024-05, Vol.629 (8012), p.660-668</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 15, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</citedby><cites>FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</cites><orcidid>0000-0001-6932-2946 ; 0000-0001-6995-6586 ; 0000-0002-8347-9891 ; 0000-0001-7542-472X ; 0000-0002-4689-8149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07340-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07340-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38693258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Ruei-Zeng</creatorcontrib><creatorcontrib>Im, Gwang-Bum</creatorcontrib><creatorcontrib>Luo, Allen Chilun</creatorcontrib><creatorcontrib>Zhu, Yonglin</creatorcontrib><creatorcontrib>Hong, Xuechong</creatorcontrib><creatorcontrib>Neumeyer, Joseph</creatorcontrib><creatorcontrib>Tang, Hong-Wen</creatorcontrib><creatorcontrib>Perrimon, Norbert</creatorcontrib><creatorcontrib>Melero-Martin, Juan M.</creatorcontrib><title>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide
1
. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated
2
,
3
. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.</description><subject>13</subject><subject>14</subject><subject>38</subject><subject>59</subject><subject>631/61/2296</subject><subject>631/80/39/2348</subject><subject>692/308/575</subject><subject>Ablation</subject><subject>Animals</subject><subject>Autophagosomes - metabolism</subject><subject>Bioenergetics</subject><subject>Blood vessels</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Cellular stress response</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - transplantation</subject><subject>Energy Metabolism</subject><subject>Heart attacks</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Internalization</subject><subject>Ischemia</subject><subject>Ischemia - metabolism</subject><subject>Ischemia - therapy</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - transplantation</subject><subject>Mitophagy</subject><subject>multidisciplinary</subject><subject>Myocardial infarction</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Phagosomes</subject><subject>Protein Kinases - deficiency</subject><subject>Protein Kinases - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stromal cells</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtL4Di-ZkQVN6nAArPlJs6lyqXYztC3xyEFJAYmS-d85_evD6FzDNcYiLxxFDPJY0hoDIJQiOEAzTEVPKZcikM0B0hkDJLwGTpxbgMADAt6jGZE8pQkTM7Ry3Pt-6zqu9zWuom81Z0rjI1ak9faGxeZLu99ZZpxm5mmCYPS6sK3pvORr2w_lFXUhpBtpcvdKToqdOPM2f5doPf7u7flY7x6fXha3q7ijAjm45wmuQAikoKmoBOdM615xrK1yDnXsBasMKGpzDRmCQPCmcGpBk0xFCbPDFmgqyl3a_uPwTiv2tqN9XRn-sEpAgyw4JyRgF7-QTf9YLvQbqS4BCpTHqhkojLbO2dNoba2brXdKQxqtK0m2yrYVl-2FYSji330sA7Cfk6-9QaATIALq6409vfvf2I_AdBtiwo</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Lin, Ruei-Zeng</creator><creator>Im, Gwang-Bum</creator><creator>Luo, Allen Chilun</creator><creator>Zhu, Yonglin</creator><creator>Hong, Xuechong</creator><creator>Neumeyer, Joseph</creator><creator>Tang, Hong-Wen</creator><creator>Perrimon, Norbert</creator><creator>Melero-Martin, Juan M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6932-2946</orcidid><orcidid>https://orcid.org/0000-0001-6995-6586</orcidid><orcidid>https://orcid.org/0000-0002-8347-9891</orcidid><orcidid>https://orcid.org/0000-0001-7542-472X</orcidid><orcidid>https://orcid.org/0000-0002-4689-8149</orcidid></search><sort><creationdate>20240516</creationdate><title>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</title><author>Lin, Ruei-Zeng ; Im, Gwang-Bum ; Luo, Allen Chilun ; Zhu, Yonglin ; Hong, Xuechong ; Neumeyer, Joseph ; Tang, Hong-Wen ; Perrimon, Norbert ; Melero-Martin, Juan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d42d70372f490a2ad5aa6c5cb7d66a0b75fe1748ca15250365e19a0a410fedce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13</topic><topic>14</topic><topic>38</topic><topic>59</topic><topic>631/61/2296</topic><topic>631/80/39/2348</topic><topic>692/308/575</topic><topic>Ablation</topic><topic>Animals</topic><topic>Autophagosomes - metabolism</topic><topic>Bioenergetics</topic><topic>Blood vessels</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Cellular stress response</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - transplantation</topic><topic>Energy Metabolism</topic><topic>Heart attacks</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Internalization</topic><topic>Ischemia</topic><topic>Ischemia - metabolism</topic><topic>Ischemia - therapy</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - transplantation</topic><topic>Mitophagy</topic><topic>multidisciplinary</topic><topic>Myocardial infarction</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Phagosomes</topic><topic>Protein Kinases - deficiency</topic><topic>Protein Kinases - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stromal cells</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ruei-Zeng</creatorcontrib><creatorcontrib>Im, Gwang-Bum</creatorcontrib><creatorcontrib>Luo, Allen Chilun</creatorcontrib><creatorcontrib>Zhu, Yonglin</creatorcontrib><creatorcontrib>Hong, Xuechong</creatorcontrib><creatorcontrib>Neumeyer, Joseph</creatorcontrib><creatorcontrib>Tang, Hong-Wen</creatorcontrib><creatorcontrib>Perrimon, Norbert</creatorcontrib><creatorcontrib>Melero-Martin, Juan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ruei-Zeng</au><au>Im, Gwang-Bum</au><au>Luo, Allen Chilun</au><au>Zhu, Yonglin</au><au>Hong, Xuechong</au><au>Neumeyer, Joseph</au><au>Tang, Hong-Wen</au><au>Perrimon, Norbert</au><au>Melero-Martin, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial transfer mediates endothelial cell engraftment through mitophagy</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-16</date><risdate>2024</risdate><volume>629</volume><issue>8012</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide
1
. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated
2
,
3
. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1–Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
Under stressful conditions, mesenchymal stromal cells transfer mitochondria to endothelial cells through tunnelling nanotubes, and artificially transplanting mitochondria into endothelial cells improves the ability of these cells to engraft and to revascularize ischaemic tissues.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38693258</pmid><doi>10.1038/s41586-024-07340-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6932-2946</orcidid><orcidid>https://orcid.org/0000-0001-6995-6586</orcidid><orcidid>https://orcid.org/0000-0002-8347-9891</orcidid><orcidid>https://orcid.org/0000-0001-7542-472X</orcidid><orcidid>https://orcid.org/0000-0002-4689-8149</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-05, Vol.629 (8012), p.660-668 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3050176653 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13 14 38 59 631/61/2296 631/80/39/2348 692/308/575 Ablation Animals Autophagosomes - metabolism Bioenergetics Blood vessels Cell therapy Cell- and Tissue-Based Therapy - methods Cellular stress response Endothelial cells Endothelial Cells - cytology Endothelial Cells - metabolism Endothelial Cells - transplantation Energy Metabolism Heart attacks Human Umbilical Vein Endothelial Cells - metabolism Humanities and Social Sciences Humans Internalization Ischemia Ischemia - metabolism Ischemia - therapy Male Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mice Mice, Nude Mitochondria Mitochondria - metabolism Mitochondria - transplantation Mitophagy multidisciplinary Myocardial infarction Nanotechnology Nanotubes Phagosomes Protein Kinases - deficiency Protein Kinases - metabolism Science Science (multidisciplinary) Stromal cells Ubiquitin-Protein Ligases - deficiency Ubiquitin-Protein Ligases - metabolism |
title | Mitochondrial transfer mediates endothelial cell engraftment through mitophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20transfer%20mediates%20endothelial%20cell%20engraftment%20through%20mitophagy&rft.jtitle=Nature%20(London)&rft.au=Lin,%20Ruei-Zeng&rft.date=2024-05-16&rft.volume=629&rft.issue=8012&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07340-0&rft_dat=%3Cproquest_cross%3E3050176653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056804896&rft_id=info:pmid/38693258&rfr_iscdi=true |