Expanding chalcogen bonds in thiophenes to interactions with halogens

Compounds containing the thiophene moiety find several applications in physics and chemistry, such as electrical conduction, which depends on specific conformations to properly exhibiting the desired properties. In turn, chalcogen bonding has found to modulate the conformation of some N-thiophen-2-y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2024-08, Vol.45 (22), p.1914-1920
Hauptverfasser: Ferreira, Bruna R, Martins, Francisco A, Freitas, Matheus P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compounds containing the thiophene moiety find several applications in physics and chemistry, such as electrical conduction, which depends on specific conformations to properly exhibiting the desired properties. In turn, chalcogen bonding has found to modulate the conformation of some N-thiophen-2-ylfomamides. Since halogens participate in a kin interaction (halogen bonding) and are abundant in agrochemicals, pharmaceuticals, and materials, we have quantum-chemically explored the interaction between organic halogen and thiophene as a conformational modulator in some model compounds. Although such interaction indeed appears, as demonstrated by atoms in molecules and natural bond orbital analysis, it is inefficient to control the conformational equilibrium. An energy decomposition analysis scheme demonstrated that halomethane and thiophene tend to move away from one another due to a core component (Pauli repulsion and exchange), which is mainly due to a deformation term. Therefore, chalcogen bonds with halogens appear weaker than with other chalcogens.
ISSN:0192-8651
1096-987X
1096-987X
DOI:10.1002/jcc.27368