Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network

Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-06, Vol.175, p.108371, Article 108371
Hauptverfasser: Fang, Fang, Sun, Yizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108371
container_title Computers in biology and medicine
container_volume 175
creator Fang, Fang
Sun, Yizhou
description Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associated with SLE, there are still numerous potential genes yet to be discovered. The search for relevant genes through biological experiments entails significant financial and human resources. With the advancement of computational technologies like deep learning, we aim to identify SLE-related genes through deep learning methods, thereby narrowing down the scope for biological experimentation. This study introduces SLEDL, a deep learning-based approach that leverages DNN and graph neural networks to effectively identify SLE-related genes by capturing relevant features in the gene interaction network. The above steps transform the identification of SLE related genes into a binary classification problem, ultimately solved through a fully connected layer. The results demonstrate the superiority of SLEDL, achieving higher AUC (0.7274) and AUPR (0.7599), further validated through case studies. •We propose SLEDL, a fusion method of deep neural networks and graph neural networks for identifying SLE related genes.•We constructed a SLE related gene interaction network and fully extracted gene features.•The functions of the predicted SLE related genes are closely related to immune pathways.
doi_str_mv 10.1016/j.compbiomed.2024.108371
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050173381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524004554</els_id><sourcerecordid>3050173381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-fe2acdfd0d322ed444775752ad05ac42c8de5db239af66349845f3ecb88f4bec3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhLyBLXLhk8WfsHKECilSpHNqz5diT1ksSp7ZDtf8eL9sVEpeebI2fd2bkByFMyZYS2n7abV2clj7ECfyWESZqWXNFX6AN1apriOTiJdoQQkkjNJNn6E3OO0KIIJy8Rmdctx3taLtBDz8T-OBKiDOOA877XGAKDo_rsmYMaV_uYbIl5jU3CUZbwOM7mCHj3uZ6r7G7ZJd7bEuB-W-bGcpjTL-wnT32AEstrMmOp_pb9GqwY4Z3T-c5uv329ebisrm6_v7j4vNV4zhVpRmAWecHTzxnDLwQQimpJLOeSOsEc9qD9D3jnR3alotOCzlwcL3Wg-jB8XP08dh3SfFhhVzMFLKDcbQzxDUbTiShinNNK_rhP3QX1zTX7Q4UV1oSJSulj5RLMecEg1lSmGzaG0rMQYvZmX9azEGLOWqp0fdPA9b-8HYKnjxU4MsRgPojvwMkk12A2VU3CVwxPobnp_wBZHql3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053785075</pqid></control><display><type>article</type><title>Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fang, Fang ; Sun, Yizhou</creator><creatorcontrib>Fang, Fang ; Sun, Yizhou</creatorcontrib><description>Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associated with SLE, there are still numerous potential genes yet to be discovered. The search for relevant genes through biological experiments entails significant financial and human resources. With the advancement of computational technologies like deep learning, we aim to identify SLE-related genes through deep learning methods, thereby narrowing down the scope for biological experimentation. This study introduces SLEDL, a deep learning-based approach that leverages DNN and graph neural networks to effectively identify SLE-related genes by capturing relevant features in the gene interaction network. The above steps transform the identification of SLE related genes into a binary classification problem, ultimately solved through a fully connected layer. The results demonstrate the superiority of SLEDL, achieving higher AUC (0.7274) and AUPR (0.7599), further validated through case studies. •We propose SLEDL, a fusion method of deep neural networks and graph neural networks for identifying SLE related genes.•We constructed a SLE related gene interaction network and fully extracted gene features.•The functions of the predicted SLE related genes are closely related to immune pathways.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108371</identifier><identifier>PMID: 38691916</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Antibodies ; Artificial neural networks ; Association analysis ; Autoimmune diseases ; Chronic conditions ; Collaboration ; Computational Biology - methods ; Deep Learning ; Deep neural network ; Disease ; Gene ; Gene Regulatory Networks ; Genes ; Genetic factors ; Genome-Wide Association Study ; Genomes ; Graph attention network ; Graph neural networks ; Health risk assessment ; Humans ; Lupus ; Lupus Erythematosus, Systemic - genetics ; Machine learning ; Medical research ; Neural networks ; Neural Networks, Computer ; Systemic lupus erythematosus ; Transcription factors</subject><ispartof>Computers in biology and medicine, 2024-06, Vol.175, p.108371, Article 108371</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-fe2acdfd0d322ed444775752ad05ac42c8de5db239af66349845f3ecb88f4bec3</citedby><cites>FETCH-LOGICAL-c317t-fe2acdfd0d322ed444775752ad05ac42c8de5db239af66349845f3ecb88f4bec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524004554$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38691916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Sun, Yizhou</creatorcontrib><title>Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associated with SLE, there are still numerous potential genes yet to be discovered. The search for relevant genes through biological experiments entails significant financial and human resources. With the advancement of computational technologies like deep learning, we aim to identify SLE-related genes through deep learning methods, thereby narrowing down the scope for biological experimentation. This study introduces SLEDL, a deep learning-based approach that leverages DNN and graph neural networks to effectively identify SLE-related genes by capturing relevant features in the gene interaction network. The above steps transform the identification of SLE related genes into a binary classification problem, ultimately solved through a fully connected layer. The results demonstrate the superiority of SLEDL, achieving higher AUC (0.7274) and AUPR (0.7599), further validated through case studies. •We propose SLEDL, a fusion method of deep neural networks and graph neural networks for identifying SLE related genes.•We constructed a SLE related gene interaction network and fully extracted gene features.•The functions of the predicted SLE related genes are closely related to immune pathways.</description><subject>Antibodies</subject><subject>Artificial neural networks</subject><subject>Association analysis</subject><subject>Autoimmune diseases</subject><subject>Chronic conditions</subject><subject>Collaboration</subject><subject>Computational Biology - methods</subject><subject>Deep Learning</subject><subject>Deep neural network</subject><subject>Disease</subject><subject>Gene</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic factors</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Graph attention network</subject><subject>Graph neural networks</subject><subject>Health risk assessment</subject><subject>Humans</subject><subject>Lupus</subject><subject>Lupus Erythematosus, Systemic - genetics</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Systemic lupus erythematosus</subject><subject>Transcription factors</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhLyBLXLhk8WfsHKECilSpHNqz5diT1ksSp7ZDtf8eL9sVEpeebI2fd2bkByFMyZYS2n7abV2clj7ECfyWESZqWXNFX6AN1apriOTiJdoQQkkjNJNn6E3OO0KIIJy8Rmdctx3taLtBDz8T-OBKiDOOA877XGAKDo_rsmYMaV_uYbIl5jU3CUZbwOM7mCHj3uZ6r7G7ZJd7bEuB-W-bGcpjTL-wnT32AEstrMmOp_pb9GqwY4Z3T-c5uv329ebisrm6_v7j4vNV4zhVpRmAWecHTzxnDLwQQimpJLOeSOsEc9qD9D3jnR3alotOCzlwcL3Wg-jB8XP08dh3SfFhhVzMFLKDcbQzxDUbTiShinNNK_rhP3QX1zTX7Q4UV1oSJSulj5RLMecEg1lSmGzaG0rMQYvZmX9azEGLOWqp0fdPA9b-8HYKnjxU4MsRgPojvwMkk12A2VU3CVwxPobnp_wBZHql3Q</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Fang, Fang</creator><creator>Sun, Yizhou</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202406</creationdate><title>Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network</title><author>Fang, Fang ; Sun, Yizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-fe2acdfd0d322ed444775752ad05ac42c8de5db239af66349845f3ecb88f4bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibodies</topic><topic>Artificial neural networks</topic><topic>Association analysis</topic><topic>Autoimmune diseases</topic><topic>Chronic conditions</topic><topic>Collaboration</topic><topic>Computational Biology - methods</topic><topic>Deep Learning</topic><topic>Deep neural network</topic><topic>Disease</topic><topic>Gene</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic factors</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Graph attention network</topic><topic>Graph neural networks</topic><topic>Health risk assessment</topic><topic>Humans</topic><topic>Lupus</topic><topic>Lupus Erythematosus, Systemic - genetics</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Systemic lupus erythematosus</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Sun, Yizhou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Fang</au><au>Sun, Yizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-06</date><risdate>2024</risdate><volume>175</volume><spage>108371</spage><pages>108371-</pages><artnum>108371</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associated with SLE, there are still numerous potential genes yet to be discovered. The search for relevant genes through biological experiments entails significant financial and human resources. With the advancement of computational technologies like deep learning, we aim to identify SLE-related genes through deep learning methods, thereby narrowing down the scope for biological experimentation. This study introduces SLEDL, a deep learning-based approach that leverages DNN and graph neural networks to effectively identify SLE-related genes by capturing relevant features in the gene interaction network. The above steps transform the identification of SLE related genes into a binary classification problem, ultimately solved through a fully connected layer. The results demonstrate the superiority of SLEDL, achieving higher AUC (0.7274) and AUPR (0.7599), further validated through case studies. •We propose SLEDL, a fusion method of deep neural networks and graph neural networks for identifying SLE related genes.•We constructed a SLE related gene interaction network and fully extracted gene features.•The functions of the predicted SLE related genes are closely related to immune pathways.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38691916</pmid><doi>10.1016/j.compbiomed.2024.108371</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-06, Vol.175, p.108371, Article 108371
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3050173381
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Antibodies
Artificial neural networks
Association analysis
Autoimmune diseases
Chronic conditions
Collaboration
Computational Biology - methods
Deep Learning
Deep neural network
Disease
Gene
Gene Regulatory Networks
Genes
Genetic factors
Genome-Wide Association Study
Genomes
Graph attention network
Graph neural networks
Health risk assessment
Humans
Lupus
Lupus Erythematosus, Systemic - genetics
Machine learning
Medical research
Neural networks
Neural Networks, Computer
Systemic lupus erythematosus
Transcription factors
title Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20systemic%20lupus%20erythematosus-related%20genes%20based%20on%20graph%20attention%20network%20and%20deep%20neural%20network&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Fang,%20Fang&rft.date=2024-06&rft.volume=175&rft.spage=108371&rft.pages=108371-&rft.artnum=108371&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108371&rft_dat=%3Cproquest_cross%3E3050173381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053785075&rft_id=info:pmid/38691916&rft_els_id=S0010482524004554&rfr_iscdi=true