Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice
Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced on neuroanatomy in the adolescent and adult mouse brain. We examined neuronal connectivity, structural covaria...
Gespeichert in:
Veröffentlicht in: | Journal of psychiatry & neuroscience 2024-05, Vol.49 (3), p.E157-E171 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E171 |
---|---|
container_issue | 3 |
container_start_page | E157 |
container_title | Journal of psychiatry & neuroscience |
container_volume | 49 |
creator | Hoops, Daniel Yee, Yohan Hammill, Christopher Wong, Sammi Manitt, Colleen Bedell, Barry J Cahill, Lindsay Lerch, Jason P Flores, Cecilia Sled, John G |
description | Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced
on neuroanatomy in the adolescent and adult mouse brain.
We examined neuronal connectivity, structural covariance, and molecular processes in a
-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute.
We included 11
-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of
haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that
haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of
,
(encoding DCC's co-receptor), and
(encoding its ligand, netrin-1) as underlying our structural findings.
Our study involved a single sex (males) at only 2 ages.
The neuroanatomical phenotype of
haploinsufficiency described in mice parallels that observed in
-haploinsufficient humans. It is critical to understand the
haploinsufficient mouse as a clinically relevant model system. |
doi_str_mv | 10.1503/jpn.230106 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050172902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802234992</galeid><sourcerecordid>A802234992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-f0d3e177b512dcb6dbe0aa5e479b9b2ffc1bb54c779688ee6b3100212e73ee163</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqVwwwMgCyQEqFl8yJG7asuhUgUSh-vIcca7Lomd2k7pvhzPxkRboIv2BvnCHvvz7_GvmSR5zOiC5VS8vhjtggvKaHEnOWRZVaU8E9ldXLOKphjzg-RBCBeUUk5Zfj85EFVR86IWh8nPUxNG70bno3FWRiAWJu8kLt1glOwJaA0qBuI0OV0uyVqOvTM2TFobZcCqDTGWyM71EBSGQJQbRumhIz9MXOPJ1Me1c90b0hv7PZDoSOdGORgLx8hai-rmysTNHF1JbySKHBNpO7ICCwSuRw8hYHak9RLfGuQY5jcxPXiY3NOyD_DoZj5Kvr17-3X5IT3_9P5seXKeqpzmMdW0E8DKss0Z71RbdC1QKXPIyrqtW661Ym2bZ6os66KqAIpWMDSLcSgFACvEUfJiq4teXU4QYjMY_G7fSwtuCo2gOWUlrylH9Nk_6IWbvMXskCpLwapCFH-pleyhMVa76KWaRZuTinIusrqetdI91GyLl72zoA1u7_BP9_BqNJfNbWixB8LRAVq6V_XlzgVkIlzHlZxCaM6-fP4P9uMu-_wWuwaJhRJcP82VGHbBV1tQeReCB92M3gzSbxpGm7kFGmyBZtsCCD-58X9qB-j-oL9rXvwCFDkALQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077318636</pqid></control><display><type>article</type><title>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hoops, Daniel ; Yee, Yohan ; Hammill, Christopher ; Wong, Sammi ; Manitt, Colleen ; Bedell, Barry J ; Cahill, Lindsay ; Lerch, Jason P ; Flores, Cecilia ; Sled, John G</creator><creatorcontrib>Hoops, Daniel ; Yee, Yohan ; Hammill, Christopher ; Wong, Sammi ; Manitt, Colleen ; Bedell, Barry J ; Cahill, Lindsay ; Lerch, Jason P ; Flores, Cecilia ; Sled, John G</creatorcontrib><description>Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced
on neuroanatomy in the adolescent and adult mouse brain.
We examined neuronal connectivity, structural covariance, and molecular processes in a
-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute.
We included 11
-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of
haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that
haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of
,
(encoding DCC's co-receptor), and
(encoding its ligand, netrin-1) as underlying our structural findings.
Our study involved a single sex (males) at only 2 ages.
The neuroanatomical phenotype of
haploinsufficiency described in mice parallels that observed in
-haploinsufficient humans. It is critical to understand the
haploinsufficient mouse as a clinically relevant model system.</description><identifier>ISSN: 1180-4882</identifier><identifier>EISSN: 1488-2434</identifier><identifier>DOI: 10.1503/jpn.230106</identifier><identifier>PMID: 38692693</identifier><language>eng</language><publisher>Canada: CMA Impact Inc</publisher><subject>Adolescence ; Adolescents ; Age Factors ; Aging - genetics ; Aging - physiology ; Analysis ; Anatomy ; Animals ; Axonogenesis ; Brain ; Brain - anatomy & histology ; Brain - growth & development ; Brain - metabolism ; Brain architecture ; Brain mapping ; Child development ; Colorectal cancer ; Colorectal carcinoma ; DCC protein ; DCC Receptor - genetics ; Dopamine ; Dopamine - metabolism ; Female ; Gene Expression ; Gene mapping ; Genotype & phenotype ; Haploinsufficiency ; Magnetic resonance imaging ; Male ; Mental disorders ; Mice ; Mice, Inbred C57BL ; Netrin-1 ; Neural networks ; Neural Pathways ; Neuroimaging ; Neurons ; Neurophysiology ; Phenols ; Phenotypes ; Proteins ; Registration ; Variance analysis ; Volumetric analysis</subject><ispartof>Journal of psychiatry & neuroscience, 2024-05, Vol.49 (3), p.E157-E171</ispartof><rights>2024 CMA Impact Inc. or its licensors.</rights><rights>COPYRIGHT 2024 CMA Impact Inc.</rights><rights>2024. This work is published under https://jpn.ca/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38692693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoops, Daniel</creatorcontrib><creatorcontrib>Yee, Yohan</creatorcontrib><creatorcontrib>Hammill, Christopher</creatorcontrib><creatorcontrib>Wong, Sammi</creatorcontrib><creatorcontrib>Manitt, Colleen</creatorcontrib><creatorcontrib>Bedell, Barry J</creatorcontrib><creatorcontrib>Cahill, Lindsay</creatorcontrib><creatorcontrib>Lerch, Jason P</creatorcontrib><creatorcontrib>Flores, Cecilia</creatorcontrib><creatorcontrib>Sled, John G</creatorcontrib><title>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</title><title>Journal of psychiatry & neuroscience</title><addtitle>J Psychiatry Neurosci</addtitle><description>Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced
on neuroanatomy in the adolescent and adult mouse brain.
We examined neuronal connectivity, structural covariance, and molecular processes in a
-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute.
We included 11
-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of
haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that
haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of
,
(encoding DCC's co-receptor), and
(encoding its ligand, netrin-1) as underlying our structural findings.
Our study involved a single sex (males) at only 2 ages.
The neuroanatomical phenotype of
haploinsufficiency described in mice parallels that observed in
-haploinsufficient humans. It is critical to understand the
haploinsufficient mouse as a clinically relevant model system.</description><subject>Adolescence</subject><subject>Adolescents</subject><subject>Age Factors</subject><subject>Aging - genetics</subject><subject>Aging - physiology</subject><subject>Analysis</subject><subject>Anatomy</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - growth & development</subject><subject>Brain - metabolism</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Child development</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>DCC protein</subject><subject>DCC Receptor - genetics</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene mapping</subject><subject>Genotype & phenotype</subject><subject>Haploinsufficiency</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mental disorders</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Netrin-1</subject><subject>Neural networks</subject><subject>Neural Pathways</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Phenols</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Registration</subject><subject>Variance analysis</subject><subject>Volumetric analysis</subject><issn>1180-4882</issn><issn>1488-2434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVk9tu1DAQhiMEoqVwwwMgCyQEqFl8yJG7asuhUgUSh-vIcca7Lomd2k7pvhzPxkRboIv2BvnCHvvz7_GvmSR5zOiC5VS8vhjtggvKaHEnOWRZVaU8E9ldXLOKphjzg-RBCBeUUk5Zfj85EFVR86IWh8nPUxNG70bno3FWRiAWJu8kLt1glOwJaA0qBuI0OV0uyVqOvTM2TFobZcCqDTGWyM71EBSGQJQbRumhIz9MXOPJ1Me1c90b0hv7PZDoSOdGORgLx8hai-rmysTNHF1JbySKHBNpO7ICCwSuRw8hYHak9RLfGuQY5jcxPXiY3NOyD_DoZj5Kvr17-3X5IT3_9P5seXKeqpzmMdW0E8DKss0Z71RbdC1QKXPIyrqtW661Ym2bZ6os66KqAIpWMDSLcSgFACvEUfJiq4teXU4QYjMY_G7fSwtuCo2gOWUlrylH9Nk_6IWbvMXskCpLwapCFH-pleyhMVa76KWaRZuTinIusrqetdI91GyLl72zoA1u7_BP9_BqNJfNbWixB8LRAVq6V_XlzgVkIlzHlZxCaM6-fP4P9uMu-_wWuwaJhRJcP82VGHbBV1tQeReCB92M3gzSbxpGm7kFGmyBZtsCCD-58X9qB-j-oL9rXvwCFDkALQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Hoops, Daniel</creator><creator>Yee, Yohan</creator><creator>Hammill, Christopher</creator><creator>Wong, Sammi</creator><creator>Manitt, Colleen</creator><creator>Bedell, Barry J</creator><creator>Cahill, Lindsay</creator><creator>Lerch, Jason P</creator><creator>Flores, Cecilia</creator><creator>Sled, John G</creator><general>CMA Impact Inc</general><general>CMA Impact, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M3G</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</title><author>Hoops, Daniel ; Yee, Yohan ; Hammill, Christopher ; Wong, Sammi ; Manitt, Colleen ; Bedell, Barry J ; Cahill, Lindsay ; Lerch, Jason P ; Flores, Cecilia ; Sled, John G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-f0d3e177b512dcb6dbe0aa5e479b9b2ffc1bb54c779688ee6b3100212e73ee163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescence</topic><topic>Adolescents</topic><topic>Age Factors</topic><topic>Aging - genetics</topic><topic>Aging - physiology</topic><topic>Analysis</topic><topic>Anatomy</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - growth & development</topic><topic>Brain - metabolism</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Child development</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>DCC protein</topic><topic>DCC Receptor - genetics</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene mapping</topic><topic>Genotype & phenotype</topic><topic>Haploinsufficiency</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mental disorders</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Netrin-1</topic><topic>Neural networks</topic><topic>Neural Pathways</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Phenols</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Registration</topic><topic>Variance analysis</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoops, Daniel</creatorcontrib><creatorcontrib>Yee, Yohan</creatorcontrib><creatorcontrib>Hammill, Christopher</creatorcontrib><creatorcontrib>Wong, Sammi</creatorcontrib><creatorcontrib>Manitt, Colleen</creatorcontrib><creatorcontrib>Bedell, Barry J</creatorcontrib><creatorcontrib>Cahill, Lindsay</creatorcontrib><creatorcontrib>Lerch, Jason P</creatorcontrib><creatorcontrib>Flores, Cecilia</creatorcontrib><creatorcontrib>Sled, John G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of psychiatry & neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoops, Daniel</au><au>Yee, Yohan</au><au>Hammill, Christopher</au><au>Wong, Sammi</au><au>Manitt, Colleen</au><au>Bedell, Barry J</au><au>Cahill, Lindsay</au><au>Lerch, Jason P</au><au>Flores, Cecilia</au><au>Sled, John G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</atitle><jtitle>Journal of psychiatry & neuroscience</jtitle><addtitle>J Psychiatry Neurosci</addtitle><date>2024-05</date><risdate>2024</risdate><volume>49</volume><issue>3</issue><spage>E157</spage><epage>E171</epage><pages>E157-E171</pages><issn>1180-4882</issn><eissn>1488-2434</eissn><abstract>Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced
on neuroanatomy in the adolescent and adult mouse brain.
We examined neuronal connectivity, structural covariance, and molecular processes in a
-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute.
We included 11
-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of
haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that
haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of
,
(encoding DCC's co-receptor), and
(encoding its ligand, netrin-1) as underlying our structural findings.
Our study involved a single sex (males) at only 2 ages.
The neuroanatomical phenotype of
haploinsufficiency described in mice parallels that observed in
-haploinsufficient humans. It is critical to understand the
haploinsufficient mouse as a clinically relevant model system.</abstract><cop>Canada</cop><pub>CMA Impact Inc</pub><pmid>38692693</pmid><doi>10.1503/jpn.230106</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1180-4882 |
ispartof | Journal of psychiatry & neuroscience, 2024-05, Vol.49 (3), p.E157-E171 |
issn | 1180-4882 1488-2434 |
language | eng |
recordid | cdi_proquest_miscellaneous_3050172902 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adolescence Adolescents Age Factors Aging - genetics Aging - physiology Analysis Anatomy Animals Axonogenesis Brain Brain - anatomy & histology Brain - growth & development Brain - metabolism Brain architecture Brain mapping Child development Colorectal cancer Colorectal carcinoma DCC protein DCC Receptor - genetics Dopamine Dopamine - metabolism Female Gene Expression Gene mapping Genotype & phenotype Haploinsufficiency Magnetic resonance imaging Male Mental disorders Mice Mice, Inbred C57BL Netrin-1 Neural networks Neural Pathways Neuroimaging Neurons Neurophysiology Phenols Phenotypes Proteins Registration Variance analysis Volumetric analysis |
title | Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disproportionate%20neuroanatomical%20effects%20of%20DCC%20haploinsufficiency%20in%20adolescence%20compared%20with%20adulthood:%20links%20to%20dopamine,%20connectivity,%20covariance,%20and%20gene%20expression%20brain%20maps%20in%20mice&rft.jtitle=Journal%20of%20psychiatry%20&%20neuroscience&rft.au=Hoops,%20Daniel&rft.date=2024-05&rft.volume=49&rft.issue=3&rft.spage=E157&rft.epage=E171&rft.pages=E157-E171&rft.issn=1180-4882&rft.eissn=1488-2434&rft_id=info:doi/10.1503/jpn.230106&rft_dat=%3Cgale_proqu%3EA802234992%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077318636&rft_id=info:pmid/38692693&rft_galeid=A802234992&rfr_iscdi=true |