Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice

Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced on neuroanatomy in the adolescent and adult mouse brain. We examined neuronal connectivity, structural covaria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of psychiatry & neuroscience 2024-05, Vol.49 (3), p.E157-E171
Hauptverfasser: Hoops, Daniel, Yee, Yohan, Hammill, Christopher, Wong, Sammi, Manitt, Colleen, Bedell, Barry J, Cahill, Lindsay, Lerch, Jason P, Flores, Cecilia, Sled, John G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E171
container_issue 3
container_start_page E157
container_title Journal of psychiatry & neuroscience
container_volume 49
creator Hoops, Daniel
Yee, Yohan
Hammill, Christopher
Wong, Sammi
Manitt, Colleen
Bedell, Barry J
Cahill, Lindsay
Lerch, Jason P
Flores, Cecilia
Sled, John G
description Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced on neuroanatomy in the adolescent and adult mouse brain. We examined neuronal connectivity, structural covariance, and molecular processes in a -haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. We included 11 -haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of , (encoding DCC's co-receptor), and (encoding its ligand, netrin-1) as underlying our structural findings. Our study involved a single sex (males) at only 2 ages. The neuroanatomical phenotype of haploinsufficiency described in mice parallels that observed in -haploinsufficient humans. It is critical to understand the haploinsufficient mouse as a clinically relevant model system.
doi_str_mv 10.1503/jpn.230106
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050172902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802234992</galeid><sourcerecordid>A802234992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-f0d3e177b512dcb6dbe0aa5e479b9b2ffc1bb54c779688ee6b3100212e73ee163</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqVwwwMgCyQEqFl8yJG7asuhUgUSh-vIcca7Lomd2k7pvhzPxkRboIv2BvnCHvvz7_GvmSR5zOiC5VS8vhjtggvKaHEnOWRZVaU8E9ldXLOKphjzg-RBCBeUUk5Zfj85EFVR86IWh8nPUxNG70bno3FWRiAWJu8kLt1glOwJaA0qBuI0OV0uyVqOvTM2TFobZcCqDTGWyM71EBSGQJQbRumhIz9MXOPJ1Me1c90b0hv7PZDoSOdGORgLx8hai-rmysTNHF1JbySKHBNpO7ICCwSuRw8hYHak9RLfGuQY5jcxPXiY3NOyD_DoZj5Kvr17-3X5IT3_9P5seXKeqpzmMdW0E8DKss0Z71RbdC1QKXPIyrqtW661Ym2bZ6os66KqAIpWMDSLcSgFACvEUfJiq4teXU4QYjMY_G7fSwtuCo2gOWUlrylH9Nk_6IWbvMXskCpLwapCFH-pleyhMVa76KWaRZuTinIusrqetdI91GyLl72zoA1u7_BP9_BqNJfNbWixB8LRAVq6V_XlzgVkIlzHlZxCaM6-fP4P9uMu-_wWuwaJhRJcP82VGHbBV1tQeReCB92M3gzSbxpGm7kFGmyBZtsCCD-58X9qB-j-oL9rXvwCFDkALQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077318636</pqid></control><display><type>article</type><title>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hoops, Daniel ; Yee, Yohan ; Hammill, Christopher ; Wong, Sammi ; Manitt, Colleen ; Bedell, Barry J ; Cahill, Lindsay ; Lerch, Jason P ; Flores, Cecilia ; Sled, John G</creator><creatorcontrib>Hoops, Daniel ; Yee, Yohan ; Hammill, Christopher ; Wong, Sammi ; Manitt, Colleen ; Bedell, Barry J ; Cahill, Lindsay ; Lerch, Jason P ; Flores, Cecilia ; Sled, John G</creatorcontrib><description>Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced on neuroanatomy in the adolescent and adult mouse brain. We examined neuronal connectivity, structural covariance, and molecular processes in a -haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. We included 11 -haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of , (encoding DCC's co-receptor), and (encoding its ligand, netrin-1) as underlying our structural findings. Our study involved a single sex (males) at only 2 ages. The neuroanatomical phenotype of haploinsufficiency described in mice parallels that observed in -haploinsufficient humans. It is critical to understand the haploinsufficient mouse as a clinically relevant model system.</description><identifier>ISSN: 1180-4882</identifier><identifier>EISSN: 1488-2434</identifier><identifier>DOI: 10.1503/jpn.230106</identifier><identifier>PMID: 38692693</identifier><language>eng</language><publisher>Canada: CMA Impact Inc</publisher><subject>Adolescence ; Adolescents ; Age Factors ; Aging - genetics ; Aging - physiology ; Analysis ; Anatomy ; Animals ; Axonogenesis ; Brain ; Brain - anatomy &amp; histology ; Brain - growth &amp; development ; Brain - metabolism ; Brain architecture ; Brain mapping ; Child development ; Colorectal cancer ; Colorectal carcinoma ; DCC protein ; DCC Receptor - genetics ; Dopamine ; Dopamine - metabolism ; Female ; Gene Expression ; Gene mapping ; Genotype &amp; phenotype ; Haploinsufficiency ; Magnetic resonance imaging ; Male ; Mental disorders ; Mice ; Mice, Inbred C57BL ; Netrin-1 ; Neural networks ; Neural Pathways ; Neuroimaging ; Neurons ; Neurophysiology ; Phenols ; Phenotypes ; Proteins ; Registration ; Variance analysis ; Volumetric analysis</subject><ispartof>Journal of psychiatry &amp; neuroscience, 2024-05, Vol.49 (3), p.E157-E171</ispartof><rights>2024 CMA Impact Inc. or its licensors.</rights><rights>COPYRIGHT 2024 CMA Impact Inc.</rights><rights>2024. This work is published under https://jpn.ca/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38692693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoops, Daniel</creatorcontrib><creatorcontrib>Yee, Yohan</creatorcontrib><creatorcontrib>Hammill, Christopher</creatorcontrib><creatorcontrib>Wong, Sammi</creatorcontrib><creatorcontrib>Manitt, Colleen</creatorcontrib><creatorcontrib>Bedell, Barry J</creatorcontrib><creatorcontrib>Cahill, Lindsay</creatorcontrib><creatorcontrib>Lerch, Jason P</creatorcontrib><creatorcontrib>Flores, Cecilia</creatorcontrib><creatorcontrib>Sled, John G</creatorcontrib><title>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</title><title>Journal of psychiatry &amp; neuroscience</title><addtitle>J Psychiatry Neurosci</addtitle><description>Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced on neuroanatomy in the adolescent and adult mouse brain. We examined neuronal connectivity, structural covariance, and molecular processes in a -haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. We included 11 -haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of , (encoding DCC's co-receptor), and (encoding its ligand, netrin-1) as underlying our structural findings. Our study involved a single sex (males) at only 2 ages. The neuroanatomical phenotype of haploinsufficiency described in mice parallels that observed in -haploinsufficient humans. It is critical to understand the haploinsufficient mouse as a clinically relevant model system.</description><subject>Adolescence</subject><subject>Adolescents</subject><subject>Age Factors</subject><subject>Aging - genetics</subject><subject>Aging - physiology</subject><subject>Analysis</subject><subject>Anatomy</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - growth &amp; development</subject><subject>Brain - metabolism</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Child development</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>DCC protein</subject><subject>DCC Receptor - genetics</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene mapping</subject><subject>Genotype &amp; phenotype</subject><subject>Haploinsufficiency</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mental disorders</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Netrin-1</subject><subject>Neural networks</subject><subject>Neural Pathways</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Phenols</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Registration</subject><subject>Variance analysis</subject><subject>Volumetric analysis</subject><issn>1180-4882</issn><issn>1488-2434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVk9tu1DAQhiMEoqVwwwMgCyQEqFl8yJG7asuhUgUSh-vIcca7Lomd2k7pvhzPxkRboIv2BvnCHvvz7_GvmSR5zOiC5VS8vhjtggvKaHEnOWRZVaU8E9ldXLOKphjzg-RBCBeUUk5Zfj85EFVR86IWh8nPUxNG70bno3FWRiAWJu8kLt1glOwJaA0qBuI0OV0uyVqOvTM2TFobZcCqDTGWyM71EBSGQJQbRumhIz9MXOPJ1Me1c90b0hv7PZDoSOdGORgLx8hai-rmysTNHF1JbySKHBNpO7ICCwSuRw8hYHak9RLfGuQY5jcxPXiY3NOyD_DoZj5Kvr17-3X5IT3_9P5seXKeqpzmMdW0E8DKss0Z71RbdC1QKXPIyrqtW661Ym2bZ6os66KqAIpWMDSLcSgFACvEUfJiq4teXU4QYjMY_G7fSwtuCo2gOWUlrylH9Nk_6IWbvMXskCpLwapCFH-pleyhMVa76KWaRZuTinIusrqetdI91GyLl72zoA1u7_BP9_BqNJfNbWixB8LRAVq6V_XlzgVkIlzHlZxCaM6-fP4P9uMu-_wWuwaJhRJcP82VGHbBV1tQeReCB92M3gzSbxpGm7kFGmyBZtsCCD-58X9qB-j-oL9rXvwCFDkALQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Hoops, Daniel</creator><creator>Yee, Yohan</creator><creator>Hammill, Christopher</creator><creator>Wong, Sammi</creator><creator>Manitt, Colleen</creator><creator>Bedell, Barry J</creator><creator>Cahill, Lindsay</creator><creator>Lerch, Jason P</creator><creator>Flores, Cecilia</creator><creator>Sled, John G</creator><general>CMA Impact Inc</general><general>CMA Impact, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M3G</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</title><author>Hoops, Daniel ; Yee, Yohan ; Hammill, Christopher ; Wong, Sammi ; Manitt, Colleen ; Bedell, Barry J ; Cahill, Lindsay ; Lerch, Jason P ; Flores, Cecilia ; Sled, John G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-f0d3e177b512dcb6dbe0aa5e479b9b2ffc1bb54c779688ee6b3100212e73ee163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescence</topic><topic>Adolescents</topic><topic>Age Factors</topic><topic>Aging - genetics</topic><topic>Aging - physiology</topic><topic>Analysis</topic><topic>Anatomy</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - growth &amp; development</topic><topic>Brain - metabolism</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Child development</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>DCC protein</topic><topic>DCC Receptor - genetics</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene mapping</topic><topic>Genotype &amp; phenotype</topic><topic>Haploinsufficiency</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mental disorders</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Netrin-1</topic><topic>Neural networks</topic><topic>Neural Pathways</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Phenols</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Registration</topic><topic>Variance analysis</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoops, Daniel</creatorcontrib><creatorcontrib>Yee, Yohan</creatorcontrib><creatorcontrib>Hammill, Christopher</creatorcontrib><creatorcontrib>Wong, Sammi</creatorcontrib><creatorcontrib>Manitt, Colleen</creatorcontrib><creatorcontrib>Bedell, Barry J</creatorcontrib><creatorcontrib>Cahill, Lindsay</creatorcontrib><creatorcontrib>Lerch, Jason P</creatorcontrib><creatorcontrib>Flores, Cecilia</creatorcontrib><creatorcontrib>Sled, John G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>CBCA Reference &amp; Current Events</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of psychiatry &amp; neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoops, Daniel</au><au>Yee, Yohan</au><au>Hammill, Christopher</au><au>Wong, Sammi</au><au>Manitt, Colleen</au><au>Bedell, Barry J</au><au>Cahill, Lindsay</au><au>Lerch, Jason P</au><au>Flores, Cecilia</au><au>Sled, John G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice</atitle><jtitle>Journal of psychiatry &amp; neuroscience</jtitle><addtitle>J Psychiatry Neurosci</addtitle><date>2024-05</date><risdate>2024</risdate><volume>49</volume><issue>3</issue><spage>E157</spage><epage>E171</epage><pages>E157-E171</pages><issn>1180-4882</issn><eissn>1488-2434</eissn><abstract>Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced on neuroanatomy in the adolescent and adult mouse brain. We examined neuronal connectivity, structural covariance, and molecular processes in a -haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. We included 11 -haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of , (encoding DCC's co-receptor), and (encoding its ligand, netrin-1) as underlying our structural findings. Our study involved a single sex (males) at only 2 ages. The neuroanatomical phenotype of haploinsufficiency described in mice parallels that observed in -haploinsufficient humans. It is critical to understand the haploinsufficient mouse as a clinically relevant model system.</abstract><cop>Canada</cop><pub>CMA Impact Inc</pub><pmid>38692693</pmid><doi>10.1503/jpn.230106</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1180-4882
ispartof Journal of psychiatry & neuroscience, 2024-05, Vol.49 (3), p.E157-E171
issn 1180-4882
1488-2434
language eng
recordid cdi_proquest_miscellaneous_3050172902
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adolescence
Adolescents
Age Factors
Aging - genetics
Aging - physiology
Analysis
Anatomy
Animals
Axonogenesis
Brain
Brain - anatomy & histology
Brain - growth & development
Brain - metabolism
Brain architecture
Brain mapping
Child development
Colorectal cancer
Colorectal carcinoma
DCC protein
DCC Receptor - genetics
Dopamine
Dopamine - metabolism
Female
Gene Expression
Gene mapping
Genotype & phenotype
Haploinsufficiency
Magnetic resonance imaging
Male
Mental disorders
Mice
Mice, Inbred C57BL
Netrin-1
Neural networks
Neural Pathways
Neuroimaging
Neurons
Neurophysiology
Phenols
Phenotypes
Proteins
Registration
Variance analysis
Volumetric analysis
title Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disproportionate%20neuroanatomical%20effects%20of%20DCC%20haploinsufficiency%20in%20adolescence%20compared%20with%20adulthood:%20links%20to%20dopamine,%20connectivity,%20covariance,%20and%20gene%20expression%20brain%20maps%20in%20mice&rft.jtitle=Journal%20of%20psychiatry%20&%20neuroscience&rft.au=Hoops,%20Daniel&rft.date=2024-05&rft.volume=49&rft.issue=3&rft.spage=E157&rft.epage=E171&rft.pages=E157-E171&rft.issn=1180-4882&rft.eissn=1488-2434&rft_id=info:doi/10.1503/jpn.230106&rft_dat=%3Cgale_proqu%3EA802234992%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077318636&rft_id=info:pmid/38692693&rft_galeid=A802234992&rfr_iscdi=true