Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)

Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2024-09, Vol.44 (9), p.1480-1514
Hauptverfasser: Kostoglou, Kyriaki, Bello-Robles, Felipe, Brassard, Patrice, Chacon, Max, Claassen, Jurgen AHR, Czosnyka, Marek, Elting, Jan-Willem, Hu, Kun, Labrecque, Lawrence, Liu, Jia, Marmarelis, Vasilis Z, Payne, Stephen J, Shin, Dae Cheol, Simpson, David, Smirl, Jonathan, Panerai, Ronney B, Mitsis, Georgios D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1514
container_issue 9
container_start_page 1480
container_title Journal of cerebral blood flow and metabolism
container_volume 44
creator Kostoglou, Kyriaki
Bello-Robles, Felipe
Brassard, Patrice
Chacon, Max
Claassen, Jurgen AHR
Czosnyka, Marek
Elting, Jan-Willem
Hu, Kun
Labrecque, Lawrence
Liu, Jia
Marmarelis, Vasilis Z
Payne, Stephen J
Shin, Dae Cheol
Simpson, David
Smirl, Jonathan
Panerai, Ronney B
Mitsis, Georgios D
description Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
doi_str_mv 10.1177/0271678X241249276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3049717849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X241249276</sage_id><sourcerecordid>3049717849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-c2a3da08c2fae1a80eed47cfdfd6c10ade52a564ecad801af3096a799ed529cc3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQhy0EoqHwAFyQj-Wwwd5_3uUWRbQgVVSqisRtNbHHicvaTm1vo7xTH7JOU7gg9eSR55tPmvkR8pGzOedCfGGl4K3ofpc1L-u-FO0rMuNN0xeC8fY1mR36xQE4Ie9ivGWMdVXTvCUnVdd2XVP2M_JwYywWylswjlpMG68i1T7QuwlcMnpv3JqqvQNrJJUYcBVgpKvRe0X16HcUpuQDrqcRkvHuK73Ge4P52ykaUHpr0amnVpzTBd1tTEK6hS0GqoO3NG2QLp-0_h6izJqQFREhyA39iWnnwx96tlxc5_rze_JGwxjxw_N7Sn6df7tZfi8ury5-LBeXhayqJhWyhEoB62SpATl0DFHVQmqlVSs5A4VNCU1bowTVMQ66Yn0Lou9R5ZtIWZ2Ss6N3G_zdhDEN1kSJ4wgO_RSHitW94KKr-4zyIyqDjzGgHrbBWAj7gbPhENLwX0h55tOzflpZVP8m_qaSgfkRiLDG4dZPweV1XzA-AkRSnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717849</pqid></control><display><type>article</type><title>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</title><source>SAGE Complete A-Z List</source><source>MEDLINE</source><creator>Kostoglou, Kyriaki ; Bello-Robles, Felipe ; Brassard, Patrice ; Chacon, Max ; Claassen, Jurgen AHR ; Czosnyka, Marek ; Elting, Jan-Willem ; Hu, Kun ; Labrecque, Lawrence ; Liu, Jia ; Marmarelis, Vasilis Z ; Payne, Stephen J ; Shin, Dae Cheol ; Simpson, David ; Smirl, Jonathan ; Panerai, Ronney B ; Mitsis, Georgios D</creator><creatorcontrib>Kostoglou, Kyriaki ; Bello-Robles, Felipe ; Brassard, Patrice ; Chacon, Max ; Claassen, Jurgen AHR ; Czosnyka, Marek ; Elting, Jan-Willem ; Hu, Kun ; Labrecque, Lawrence ; Liu, Jia ; Marmarelis, Vasilis Z ; Payne, Stephen J ; Shin, Dae Cheol ; Simpson, David ; Smirl, Jonathan ; Panerai, Ronney B ; Mitsis, Georgios D</creatorcontrib><description>Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.</description><identifier>ISSN: 0271-678X</identifier><identifier>ISSN: 1559-7016</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X241249276</identifier><identifier>PMID: 38688529</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Brain - blood supply ; Brain - physiology ; Cerebrovascular Circulation - physiology ; Homeostasis - physiology ; Humans</subject><ispartof>Journal of cerebral blood flow and metabolism, 2024-09, Vol.44 (9), p.1480-1514</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-c2a3da08c2fae1a80eed47cfdfd6c10ade52a564ecad801af3096a799ed529cc3</cites><orcidid>0000-0002-6254-5044 ; 0000-0003-1054-0038 ; 0000-0002-1778-8151 ; 0000-0002-3513-9286 ; 0000-0003-1156-2810 ; 0000-0001-9072-5088 ; 0000-0001-9975-5128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0271678X241249276$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0271678X241249276$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>313,314,776,780,788,21798,27899,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kostoglou, Kyriaki</creatorcontrib><creatorcontrib>Bello-Robles, Felipe</creatorcontrib><creatorcontrib>Brassard, Patrice</creatorcontrib><creatorcontrib>Chacon, Max</creatorcontrib><creatorcontrib>Claassen, Jurgen AHR</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Elting, Jan-Willem</creatorcontrib><creatorcontrib>Hu, Kun</creatorcontrib><creatorcontrib>Labrecque, Lawrence</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Marmarelis, Vasilis Z</creatorcontrib><creatorcontrib>Payne, Stephen J</creatorcontrib><creatorcontrib>Shin, Dae Cheol</creatorcontrib><creatorcontrib>Simpson, David</creatorcontrib><creatorcontrib>Smirl, Jonathan</creatorcontrib><creatorcontrib>Panerai, Ronney B</creatorcontrib><creatorcontrib>Mitsis, Georgios D</creatorcontrib><title>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.</description><subject>Animals</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><issn>0271-678X</issn><issn>1559-7016</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQhy0EoqHwAFyQj-Wwwd5_3uUWRbQgVVSqisRtNbHHicvaTm1vo7xTH7JOU7gg9eSR55tPmvkR8pGzOedCfGGl4K3ofpc1L-u-FO0rMuNN0xeC8fY1mR36xQE4Ie9ivGWMdVXTvCUnVdd2XVP2M_JwYywWylswjlpMG68i1T7QuwlcMnpv3JqqvQNrJJUYcBVgpKvRe0X16HcUpuQDrqcRkvHuK73Ge4P52ykaUHpr0amnVpzTBd1tTEK6hS0GqoO3NG2QLp-0_h6izJqQFREhyA39iWnnwx96tlxc5_rze_JGwxjxw_N7Sn6df7tZfi8ury5-LBeXhayqJhWyhEoB62SpATl0DFHVQmqlVSs5A4VNCU1bowTVMQ66Yn0Lou9R5ZtIWZ2Ss6N3G_zdhDEN1kSJ4wgO_RSHitW94KKr-4zyIyqDjzGgHrbBWAj7gbPhENLwX0h55tOzflpZVP8m_qaSgfkRiLDG4dZPweV1XzA-AkRSnzA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kostoglou, Kyriaki</creator><creator>Bello-Robles, Felipe</creator><creator>Brassard, Patrice</creator><creator>Chacon, Max</creator><creator>Claassen, Jurgen AHR</creator><creator>Czosnyka, Marek</creator><creator>Elting, Jan-Willem</creator><creator>Hu, Kun</creator><creator>Labrecque, Lawrence</creator><creator>Liu, Jia</creator><creator>Marmarelis, Vasilis Z</creator><creator>Payne, Stephen J</creator><creator>Shin, Dae Cheol</creator><creator>Simpson, David</creator><creator>Smirl, Jonathan</creator><creator>Panerai, Ronney B</creator><creator>Mitsis, Georgios D</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6254-5044</orcidid><orcidid>https://orcid.org/0000-0003-1054-0038</orcidid><orcidid>https://orcid.org/0000-0002-1778-8151</orcidid><orcidid>https://orcid.org/0000-0002-3513-9286</orcidid><orcidid>https://orcid.org/0000-0003-1156-2810</orcidid><orcidid>https://orcid.org/0000-0001-9072-5088</orcidid><orcidid>https://orcid.org/0000-0001-9975-5128</orcidid></search><sort><creationdate>20240901</creationdate><title>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</title><author>Kostoglou, Kyriaki ; Bello-Robles, Felipe ; Brassard, Patrice ; Chacon, Max ; Claassen, Jurgen AHR ; Czosnyka, Marek ; Elting, Jan-Willem ; Hu, Kun ; Labrecque, Lawrence ; Liu, Jia ; Marmarelis, Vasilis Z ; Payne, Stephen J ; Shin, Dae Cheol ; Simpson, David ; Smirl, Jonathan ; Panerai, Ronney B ; Mitsis, Georgios D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-c2a3da08c2fae1a80eed47cfdfd6c10ade52a564ecad801af3096a799ed529cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostoglou, Kyriaki</creatorcontrib><creatorcontrib>Bello-Robles, Felipe</creatorcontrib><creatorcontrib>Brassard, Patrice</creatorcontrib><creatorcontrib>Chacon, Max</creatorcontrib><creatorcontrib>Claassen, Jurgen AHR</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Elting, Jan-Willem</creatorcontrib><creatorcontrib>Hu, Kun</creatorcontrib><creatorcontrib>Labrecque, Lawrence</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Marmarelis, Vasilis Z</creatorcontrib><creatorcontrib>Payne, Stephen J</creatorcontrib><creatorcontrib>Shin, Dae Cheol</creatorcontrib><creatorcontrib>Simpson, David</creatorcontrib><creatorcontrib>Smirl, Jonathan</creatorcontrib><creatorcontrib>Panerai, Ronney B</creatorcontrib><creatorcontrib>Mitsis, Georgios D</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostoglou, Kyriaki</au><au>Bello-Robles, Felipe</au><au>Brassard, Patrice</au><au>Chacon, Max</au><au>Claassen, Jurgen AHR</au><au>Czosnyka, Marek</au><au>Elting, Jan-Willem</au><au>Hu, Kun</au><au>Labrecque, Lawrence</au><au>Liu, Jia</au><au>Marmarelis, Vasilis Z</au><au>Payne, Stephen J</au><au>Shin, Dae Cheol</au><au>Simpson, David</au><au>Smirl, Jonathan</au><au>Panerai, Ronney B</au><au>Mitsis, Georgios D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>44</volume><issue>9</issue><spage>1480</spage><epage>1514</epage><pages>1480-1514</pages><issn>0271-678X</issn><issn>1559-7016</issn><eissn>1559-7016</eissn><abstract>Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38688529</pmid><doi>10.1177/0271678X241249276</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-6254-5044</orcidid><orcidid>https://orcid.org/0000-0003-1054-0038</orcidid><orcidid>https://orcid.org/0000-0002-1778-8151</orcidid><orcidid>https://orcid.org/0000-0002-3513-9286</orcidid><orcidid>https://orcid.org/0000-0003-1156-2810</orcidid><orcidid>https://orcid.org/0000-0001-9072-5088</orcidid><orcidid>https://orcid.org/0000-0001-9975-5128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2024-09, Vol.44 (9), p.1480-1514
issn 0271-678X
1559-7016
1559-7016
language eng
recordid cdi_proquest_miscellaneous_3049717849
source SAGE Complete A-Z List; MEDLINE
subjects Animals
Brain - blood supply
Brain - physiology
Cerebrovascular Circulation - physiology
Homeostasis - physiology
Humans
title Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-domain%20methods%20for%20quantifying%20dynamic%20cerebral%20blood%20flow%20autoregulation:%20Review%20and%20recommendations.%20A%20white%20paper%20from%20the%20Cerebrovascular%20Research%20Network%20(CARNet)&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kostoglou,%20Kyriaki&rft.date=2024-09-01&rft.volume=44&rft.issue=9&rft.spage=1480&rft.epage=1514&rft.pages=1480-1514&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X241249276&rft_dat=%3Cproquest_cross%3E3049717849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717849&rft_id=info:pmid/38688529&rft_sage_id=10.1177_0271678X241249276&rfr_iscdi=true