Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)
Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA und...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2024-09, Vol.44 (9), p.1480-1514 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1514 |
---|---|
container_issue | 9 |
container_start_page | 1480 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 44 |
creator | Kostoglou, Kyriaki Bello-Robles, Felipe Brassard, Patrice Chacon, Max Claassen, Jurgen AHR Czosnyka, Marek Elting, Jan-Willem Hu, Kun Labrecque, Lawrence Liu, Jia Marmarelis, Vasilis Z Payne, Stephen J Shin, Dae Cheol Simpson, David Smirl, Jonathan Panerai, Ronney B Mitsis, Georgios D |
description | Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA. |
doi_str_mv | 10.1177/0271678X241249276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3049717849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X241249276</sage_id><sourcerecordid>3049717849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-c2a3da08c2fae1a80eed47cfdfd6c10ade52a564ecad801af3096a799ed529cc3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQhy0EoqHwAFyQj-Wwwd5_3uUWRbQgVVSqisRtNbHHicvaTm1vo7xTH7JOU7gg9eSR55tPmvkR8pGzOedCfGGl4K3ofpc1L-u-FO0rMuNN0xeC8fY1mR36xQE4Ie9ivGWMdVXTvCUnVdd2XVP2M_JwYywWylswjlpMG68i1T7QuwlcMnpv3JqqvQNrJJUYcBVgpKvRe0X16HcUpuQDrqcRkvHuK73Ge4P52ykaUHpr0amnVpzTBd1tTEK6hS0GqoO3NG2QLp-0_h6izJqQFREhyA39iWnnwx96tlxc5_rze_JGwxjxw_N7Sn6df7tZfi8ury5-LBeXhayqJhWyhEoB62SpATl0DFHVQmqlVSs5A4VNCU1bowTVMQ66Yn0Lou9R5ZtIWZ2Ss6N3G_zdhDEN1kSJ4wgO_RSHitW94KKr-4zyIyqDjzGgHrbBWAj7gbPhENLwX0h55tOzflpZVP8m_qaSgfkRiLDG4dZPweV1XzA-AkRSnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717849</pqid></control><display><type>article</type><title>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</title><source>SAGE Complete A-Z List</source><source>MEDLINE</source><creator>Kostoglou, Kyriaki ; Bello-Robles, Felipe ; Brassard, Patrice ; Chacon, Max ; Claassen, Jurgen AHR ; Czosnyka, Marek ; Elting, Jan-Willem ; Hu, Kun ; Labrecque, Lawrence ; Liu, Jia ; Marmarelis, Vasilis Z ; Payne, Stephen J ; Shin, Dae Cheol ; Simpson, David ; Smirl, Jonathan ; Panerai, Ronney B ; Mitsis, Georgios D</creator><creatorcontrib>Kostoglou, Kyriaki ; Bello-Robles, Felipe ; Brassard, Patrice ; Chacon, Max ; Claassen, Jurgen AHR ; Czosnyka, Marek ; Elting, Jan-Willem ; Hu, Kun ; Labrecque, Lawrence ; Liu, Jia ; Marmarelis, Vasilis Z ; Payne, Stephen J ; Shin, Dae Cheol ; Simpson, David ; Smirl, Jonathan ; Panerai, Ronney B ; Mitsis, Georgios D</creatorcontrib><description>Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.</description><identifier>ISSN: 0271-678X</identifier><identifier>ISSN: 1559-7016</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X241249276</identifier><identifier>PMID: 38688529</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Brain - blood supply ; Brain - physiology ; Cerebrovascular Circulation - physiology ; Homeostasis - physiology ; Humans</subject><ispartof>Journal of cerebral blood flow and metabolism, 2024-09, Vol.44 (9), p.1480-1514</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-c2a3da08c2fae1a80eed47cfdfd6c10ade52a564ecad801af3096a799ed529cc3</cites><orcidid>0000-0002-6254-5044 ; 0000-0003-1054-0038 ; 0000-0002-1778-8151 ; 0000-0002-3513-9286 ; 0000-0003-1156-2810 ; 0000-0001-9072-5088 ; 0000-0001-9975-5128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0271678X241249276$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0271678X241249276$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>313,314,776,780,788,21798,27899,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kostoglou, Kyriaki</creatorcontrib><creatorcontrib>Bello-Robles, Felipe</creatorcontrib><creatorcontrib>Brassard, Patrice</creatorcontrib><creatorcontrib>Chacon, Max</creatorcontrib><creatorcontrib>Claassen, Jurgen AHR</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Elting, Jan-Willem</creatorcontrib><creatorcontrib>Hu, Kun</creatorcontrib><creatorcontrib>Labrecque, Lawrence</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Marmarelis, Vasilis Z</creatorcontrib><creatorcontrib>Payne, Stephen J</creatorcontrib><creatorcontrib>Shin, Dae Cheol</creatorcontrib><creatorcontrib>Simpson, David</creatorcontrib><creatorcontrib>Smirl, Jonathan</creatorcontrib><creatorcontrib>Panerai, Ronney B</creatorcontrib><creatorcontrib>Mitsis, Georgios D</creatorcontrib><title>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.</description><subject>Animals</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><issn>0271-678X</issn><issn>1559-7016</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQhy0EoqHwAFyQj-Wwwd5_3uUWRbQgVVSqisRtNbHHicvaTm1vo7xTH7JOU7gg9eSR55tPmvkR8pGzOedCfGGl4K3ofpc1L-u-FO0rMuNN0xeC8fY1mR36xQE4Ie9ivGWMdVXTvCUnVdd2XVP2M_JwYywWylswjlpMG68i1T7QuwlcMnpv3JqqvQNrJJUYcBVgpKvRe0X16HcUpuQDrqcRkvHuK73Ge4P52ykaUHpr0amnVpzTBd1tTEK6hS0GqoO3NG2QLp-0_h6izJqQFREhyA39iWnnwx96tlxc5_rze_JGwxjxw_N7Sn6df7tZfi8ury5-LBeXhayqJhWyhEoB62SpATl0DFHVQmqlVSs5A4VNCU1bowTVMQ66Yn0Lou9R5ZtIWZ2Ss6N3G_zdhDEN1kSJ4wgO_RSHitW94KKr-4zyIyqDjzGgHrbBWAj7gbPhENLwX0h55tOzflpZVP8m_qaSgfkRiLDG4dZPweV1XzA-AkRSnzA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kostoglou, Kyriaki</creator><creator>Bello-Robles, Felipe</creator><creator>Brassard, Patrice</creator><creator>Chacon, Max</creator><creator>Claassen, Jurgen AHR</creator><creator>Czosnyka, Marek</creator><creator>Elting, Jan-Willem</creator><creator>Hu, Kun</creator><creator>Labrecque, Lawrence</creator><creator>Liu, Jia</creator><creator>Marmarelis, Vasilis Z</creator><creator>Payne, Stephen J</creator><creator>Shin, Dae Cheol</creator><creator>Simpson, David</creator><creator>Smirl, Jonathan</creator><creator>Panerai, Ronney B</creator><creator>Mitsis, Georgios D</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6254-5044</orcidid><orcidid>https://orcid.org/0000-0003-1054-0038</orcidid><orcidid>https://orcid.org/0000-0002-1778-8151</orcidid><orcidid>https://orcid.org/0000-0002-3513-9286</orcidid><orcidid>https://orcid.org/0000-0003-1156-2810</orcidid><orcidid>https://orcid.org/0000-0001-9072-5088</orcidid><orcidid>https://orcid.org/0000-0001-9975-5128</orcidid></search><sort><creationdate>20240901</creationdate><title>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</title><author>Kostoglou, Kyriaki ; Bello-Robles, Felipe ; Brassard, Patrice ; Chacon, Max ; Claassen, Jurgen AHR ; Czosnyka, Marek ; Elting, Jan-Willem ; Hu, Kun ; Labrecque, Lawrence ; Liu, Jia ; Marmarelis, Vasilis Z ; Payne, Stephen J ; Shin, Dae Cheol ; Simpson, David ; Smirl, Jonathan ; Panerai, Ronney B ; Mitsis, Georgios D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-c2a3da08c2fae1a80eed47cfdfd6c10ade52a564ecad801af3096a799ed529cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostoglou, Kyriaki</creatorcontrib><creatorcontrib>Bello-Robles, Felipe</creatorcontrib><creatorcontrib>Brassard, Patrice</creatorcontrib><creatorcontrib>Chacon, Max</creatorcontrib><creatorcontrib>Claassen, Jurgen AHR</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Elting, Jan-Willem</creatorcontrib><creatorcontrib>Hu, Kun</creatorcontrib><creatorcontrib>Labrecque, Lawrence</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Marmarelis, Vasilis Z</creatorcontrib><creatorcontrib>Payne, Stephen J</creatorcontrib><creatorcontrib>Shin, Dae Cheol</creatorcontrib><creatorcontrib>Simpson, David</creatorcontrib><creatorcontrib>Smirl, Jonathan</creatorcontrib><creatorcontrib>Panerai, Ronney B</creatorcontrib><creatorcontrib>Mitsis, Georgios D</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostoglou, Kyriaki</au><au>Bello-Robles, Felipe</au><au>Brassard, Patrice</au><au>Chacon, Max</au><au>Claassen, Jurgen AHR</au><au>Czosnyka, Marek</au><au>Elting, Jan-Willem</au><au>Hu, Kun</au><au>Labrecque, Lawrence</au><au>Liu, Jia</au><au>Marmarelis, Vasilis Z</au><au>Payne, Stephen J</au><au>Shin, Dae Cheol</au><au>Simpson, David</au><au>Smirl, Jonathan</au><au>Panerai, Ronney B</au><au>Mitsis, Georgios D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>44</volume><issue>9</issue><spage>1480</spage><epage>1514</epage><pages>1480-1514</pages><issn>0271-678X</issn><issn>1559-7016</issn><eissn>1559-7016</eissn><abstract>Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38688529</pmid><doi>10.1177/0271678X241249276</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-6254-5044</orcidid><orcidid>https://orcid.org/0000-0003-1054-0038</orcidid><orcidid>https://orcid.org/0000-0002-1778-8151</orcidid><orcidid>https://orcid.org/0000-0002-3513-9286</orcidid><orcidid>https://orcid.org/0000-0003-1156-2810</orcidid><orcidid>https://orcid.org/0000-0001-9072-5088</orcidid><orcidid>https://orcid.org/0000-0001-9975-5128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2024-09, Vol.44 (9), p.1480-1514 |
issn | 0271-678X 1559-7016 1559-7016 |
language | eng |
recordid | cdi_proquest_miscellaneous_3049717849 |
source | SAGE Complete A-Z List; MEDLINE |
subjects | Animals Brain - blood supply Brain - physiology Cerebrovascular Circulation - physiology Homeostasis - physiology Humans |
title | Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-domain%20methods%20for%20quantifying%20dynamic%20cerebral%20blood%20flow%20autoregulation:%20Review%20and%20recommendations.%20A%20white%20paper%20from%20the%20Cerebrovascular%20Research%20Network%20(CARNet)&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kostoglou,%20Kyriaki&rft.date=2024-09-01&rft.volume=44&rft.issue=9&rft.spage=1480&rft.epage=1514&rft.pages=1480-1514&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X241249276&rft_dat=%3Cproquest_cross%3E3049717849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717849&rft_id=info:pmid/38688529&rft_sage_id=10.1177_0271678X241249276&rfr_iscdi=true |