Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide

The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2024-06, Vol.21 (6), p.2894-2907
Hauptverfasser: Menon, Anila M., Sidhartha, Nagamalli Naga, Shruti, Ipsha, Suresh, Ajay, Meena, Ravindra, Dikundwar, Amol G., Chopra, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2907
container_issue 6
container_start_page 2894
container_title Molecular pharmaceutics
container_volume 21
creator Menon, Anila M.
Sidhartha, Nagamalli Naga
Shruti, Ipsha
Suresh, Ajay
Meena, Ravindra
Dikundwar, Amol G.
Chopra, Deepak
description The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydratethe salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of “new conformational isomers” for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.
doi_str_mv 10.1021/acs.molpharmaceut.4c00043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3049717093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049717093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-d12ac42e89cba86edf2240ddedb77db9ebdd4c98aea2e83404df36b1865e14f93</originalsourceid><addsrcrecordid>eNqNkD1v2zAQhomiQeJ8_IWC3brYJUXaosbASJMCLhIgySycyJNFQyJlkhr870vDboBume6G530P9xDynbMFZwX_CTouBt-PHYQBNE5pITVjTIovZMaXUsyVqIqvH7uSV-Q6xh1jhVwW4pJcCbVSivFyRvavB5c67-j9OAYPuqPW0XU4xAQ9fXBb6xCDdVuaPP3jzdRDQvrSHaLVXnc4WJ25l-BHDMliPKafwxac1fQV-hSpb-m6633I7SMM1uAtuWihj3h3njfk_dfD2_ppvnl-_L2-38xBsDLNDS9AywJVpRtQKzRtUUhmDJqmLE1TYWOM1JUChAwJyaRpxarharVELttK3JAfp958eT9hTPVgo8a-B4d-irVgsip5ySqR0eqE6uBjDNjWY7ADhEPNWX00Xmfj9X_G67PxnP12PjM1A5qP5D_FGViegGPHzk_B5a8_UfwXJP-YRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717093</pqid></control><display><type>article</type><title>Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide</title><source>MEDLINE</source><source>ACS Publications</source><creator>Menon, Anila M. ; Sidhartha, Nagamalli Naga ; Shruti, Ipsha ; Suresh, Ajay ; Meena, Ravindra ; Dikundwar, Amol G. ; Chopra, Deepak</creator><creatorcontrib>Menon, Anila M. ; Sidhartha, Nagamalli Naga ; Shruti, Ipsha ; Suresh, Ajay ; Meena, Ravindra ; Dikundwar, Amol G. ; Chopra, Deepak</creatorcontrib><description>The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydratethe salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of “new conformational isomers” for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.4c00043</identifier><identifier>PMID: 38688017</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biological Availability ; Chemistry, Pharmaceutical - methods ; Chlorpropamide - chemistry ; Crystallization - methods ; Drug Compounding - methods ; Excipients - chemistry ; Hydrogen Bonding ; Rats ; Salts - chemistry ; Solubility</subject><ispartof>Molecular pharmaceutics, 2024-06, Vol.21 (6), p.2894-2907</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a307t-d12ac42e89cba86edf2240ddedb77db9ebdd4c98aea2e83404df36b1865e14f93</cites><orcidid>0000-0002-0018-6007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.4c00043$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c00043$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menon, Anila M.</creatorcontrib><creatorcontrib>Sidhartha, Nagamalli Naga</creatorcontrib><creatorcontrib>Shruti, Ipsha</creatorcontrib><creatorcontrib>Suresh, Ajay</creatorcontrib><creatorcontrib>Meena, Ravindra</creatorcontrib><creatorcontrib>Dikundwar, Amol G.</creatorcontrib><creatorcontrib>Chopra, Deepak</creatorcontrib><title>Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydratethe salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of “new conformational isomers” for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.</description><subject>Animals</subject><subject>Biological Availability</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chlorpropamide - chemistry</subject><subject>Crystallization - methods</subject><subject>Drug Compounding - methods</subject><subject>Excipients - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Rats</subject><subject>Salts - chemistry</subject><subject>Solubility</subject><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1v2zAQhomiQeJ8_IWC3brYJUXaosbASJMCLhIgySycyJNFQyJlkhr870vDboBume6G530P9xDynbMFZwX_CTouBt-PHYQBNE5pITVjTIovZMaXUsyVqIqvH7uSV-Q6xh1jhVwW4pJcCbVSivFyRvavB5c67-j9OAYPuqPW0XU4xAQ9fXBb6xCDdVuaPP3jzdRDQvrSHaLVXnc4WJ25l-BHDMliPKafwxac1fQV-hSpb-m6633I7SMM1uAtuWihj3h3njfk_dfD2_ppvnl-_L2-38xBsDLNDS9AywJVpRtQKzRtUUhmDJqmLE1TYWOM1JUChAwJyaRpxarharVELttK3JAfp958eT9hTPVgo8a-B4d-irVgsip5ySqR0eqE6uBjDNjWY7ADhEPNWX00Xmfj9X_G67PxnP12PjM1A5qP5D_FGViegGPHzk_B5a8_UfwXJP-YRw</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Menon, Anila M.</creator><creator>Sidhartha, Nagamalli Naga</creator><creator>Shruti, Ipsha</creator><creator>Suresh, Ajay</creator><creator>Meena, Ravindra</creator><creator>Dikundwar, Amol G.</creator><creator>Chopra, Deepak</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0018-6007</orcidid></search><sort><creationdate>20240603</creationdate><title>Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide</title><author>Menon, Anila M. ; Sidhartha, Nagamalli Naga ; Shruti, Ipsha ; Suresh, Ajay ; Meena, Ravindra ; Dikundwar, Amol G. ; Chopra, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-d12ac42e89cba86edf2240ddedb77db9ebdd4c98aea2e83404df36b1865e14f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological Availability</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chlorpropamide - chemistry</topic><topic>Crystallization - methods</topic><topic>Drug Compounding - methods</topic><topic>Excipients - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Rats</topic><topic>Salts - chemistry</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menon, Anila M.</creatorcontrib><creatorcontrib>Sidhartha, Nagamalli Naga</creatorcontrib><creatorcontrib>Shruti, Ipsha</creatorcontrib><creatorcontrib>Suresh, Ajay</creatorcontrib><creatorcontrib>Meena, Ravindra</creatorcontrib><creatorcontrib>Dikundwar, Amol G.</creatorcontrib><creatorcontrib>Chopra, Deepak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menon, Anila M.</au><au>Sidhartha, Nagamalli Naga</au><au>Shruti, Ipsha</au><au>Suresh, Ajay</au><au>Meena, Ravindra</au><au>Dikundwar, Amol G.</au><au>Chopra, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>2894</spage><epage>2907</epage><pages>2894-2907</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydratethe salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of “new conformational isomers” for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38688017</pmid><doi>10.1021/acs.molpharmaceut.4c00043</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0018-6007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1543-8384
ispartof Molecular pharmaceutics, 2024-06, Vol.21 (6), p.2894-2907
issn 1543-8384
1543-8392
language eng
recordid cdi_proquest_miscellaneous_3049717093
source MEDLINE; ACS Publications
subjects Animals
Biological Availability
Chemistry, Pharmaceutical - methods
Chlorpropamide - chemistry
Crystallization - methods
Drug Compounding - methods
Excipients - chemistry
Hydrogen Bonding
Rats
Salts - chemistry
Solubility
title Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthon%20Approach%20in%20Crystal%20Engineering%20to%20Modulate%20Physicochemical%20Properties%20in%20Organic%20Salts%20of%20Chlorpropamide&rft.jtitle=Molecular%20pharmaceutics&rft.au=Menon,%20Anila%20M.&rft.date=2024-06-03&rft.volume=21&rft.issue=6&rft.spage=2894&rft.epage=2907&rft.pages=2894-2907&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.4c00043&rft_dat=%3Cproquest_cross%3E3049717093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717093&rft_id=info:pmid/38688017&rfr_iscdi=true