ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images
Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade networ...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-06, Vol.175, p.108494-108494, Article 108494 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108494 |
---|---|
container_issue | |
container_start_page | 108494 |
container_title | Computers in biology and medicine |
container_volume | 175 |
creator | Jung, Ji-Hoon Oh, Hong Min Jeong, Gyu-Jun Kim, Tae-Won Koo, Hyun Jung Lee, June-Goo Yang, Dong Hyun |
description | Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg).
The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer.
In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability.
This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications.
•We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients. |
doi_str_mv | 10.1016/j.compbiomed.2024.108494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3049717088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048252400578X</els_id><sourcerecordid>3053785070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-f9f5c277369e57ea2775aa8066b790633355df562d3a7e08b4f6f7308e2cd6233</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqHwCsgSFy6bztq7tpdbiYBGqsiB9pKL5XhnE4esHWyHilfgqXGSVkhcONkz882M_f-E0BqmNdTiaju1YdyvXBixnzJgTUmrpmuekUmtZFdBy5vnZAJQQ9Uo1l6QVyltAaABDi_JBVdCqZo1E_J7uVjOq2-4_kCvaY7GpyHEESM1vqf3XzFTa5I1PVKP-SHE7_TB5Q1dhjBWi0M-Yadg7mmyGxyRlgHUhJidpb1LCW12oRRxPaLP5hQ4T9FvjLfY09kddaNZY3pNXgxml_DN43lJ7j9_upvdVLeLL_PZ9W1lmWC5GrqhtUxKLjpsJZpybY1RIMRKdiA4523bD61gPTcSQa2aQQySg0Jme8E4vyTvz3P3Mfw4YMp6dMnibmc8hkPSHJpO1hKUKui7f9BtOERfXleolkvVgoRCqTNlY0gp4qD3sXwp_tI16KNfeqv_-qWPfumzX6X17eOCw-pYe2p8MqgAH88AFkV-Oow6WYdH4Vwsyuo-uP9v-QMFWar1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053785070</pqid></control><display><type>article</type><title>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jung, Ji-Hoon ; Oh, Hong Min ; Jeong, Gyu-Jun ; Kim, Tae-Won ; Koo, Hyun Jung ; Lee, June-Goo ; Yang, Dong Hyun</creator><creatorcontrib>Jung, Ji-Hoon ; Oh, Hong Min ; Jeong, Gyu-Jun ; Kim, Tae-Won ; Koo, Hyun Jung ; Lee, June-Goo ; Yang, Dong Hyun</creatorcontrib><description>Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg).
The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer.
In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability.
This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications.
•We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108494</identifier><identifier>PMID: 38688124</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Ablation ; Accuracy ; Algorithms ; Aorta ; Aorta segmentation ; Aortic dissection ; Aortic Dissection - diagnostic imaging ; Computed tomography ; Context ; Coronary vessels ; Datasets ; Deep learning ; Diagnosis ; Dissection ; Health care facilities ; Humans ; Image enhancement ; Image processing ; Image segmentation ; Medical diagnosis ; Medical imaging ; nnUNet ; Segmentation ; Texture ; Thromboembolism ; Thrombosis ; Tomography, X-Ray Computed - methods ; Transformer ; Transformers ; U-Net</subject><ispartof>Computers in biology and medicine, 2024-06, Vol.175, p.108494-108494, Article 108494</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-f9f5c277369e57ea2775aa8066b790633355df562d3a7e08b4f6f7308e2cd6233</cites><orcidid>0009-0003-6657-3549 ; 0009-0005-1681-9154 ; 0009-0008-7040-877X ; 0009-0002-7416-6727 ; 0000-0002-1380-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.108494$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Ji-Hoon</creatorcontrib><creatorcontrib>Oh, Hong Min</creatorcontrib><creatorcontrib>Jeong, Gyu-Jun</creatorcontrib><creatorcontrib>Kim, Tae-Won</creatorcontrib><creatorcontrib>Koo, Hyun Jung</creatorcontrib><creatorcontrib>Lee, June-Goo</creatorcontrib><creatorcontrib>Yang, Dong Hyun</creatorcontrib><title>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg).
The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer.
In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability.
This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications.
•We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aorta</subject><subject>Aorta segmentation</subject><subject>Aortic dissection</subject><subject>Aortic Dissection - diagnostic imaging</subject><subject>Computed tomography</subject><subject>Context</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Dissection</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>nnUNet</subject><subject>Segmentation</subject><subject>Texture</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Transformer</subject><subject>Transformers</subject><subject>U-Net</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuEzEQhi0EoqHwCsgSFy6bztq7tpdbiYBGqsiB9pKL5XhnE4esHWyHilfgqXGSVkhcONkz882M_f-E0BqmNdTiaju1YdyvXBixnzJgTUmrpmuekUmtZFdBy5vnZAJQQ9Uo1l6QVyltAaABDi_JBVdCqZo1E_J7uVjOq2-4_kCvaY7GpyHEESM1vqf3XzFTa5I1PVKP-SHE7_TB5Q1dhjBWi0M-Yadg7mmyGxyRlgHUhJidpb1LCW12oRRxPaLP5hQ4T9FvjLfY09kddaNZY3pNXgxml_DN43lJ7j9_upvdVLeLL_PZ9W1lmWC5GrqhtUxKLjpsJZpybY1RIMRKdiA4523bD61gPTcSQa2aQQySg0Jme8E4vyTvz3P3Mfw4YMp6dMnibmc8hkPSHJpO1hKUKui7f9BtOERfXleolkvVgoRCqTNlY0gp4qD3sXwp_tI16KNfeqv_-qWPfumzX6X17eOCw-pYe2p8MqgAH88AFkV-Oow6WYdH4Vwsyuo-uP9v-QMFWar1</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Jung, Ji-Hoon</creator><creator>Oh, Hong Min</creator><creator>Jeong, Gyu-Jun</creator><creator>Kim, Tae-Won</creator><creator>Koo, Hyun Jung</creator><creator>Lee, June-Goo</creator><creator>Yang, Dong Hyun</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-6657-3549</orcidid><orcidid>https://orcid.org/0009-0005-1681-9154</orcidid><orcidid>https://orcid.org/0009-0008-7040-877X</orcidid><orcidid>https://orcid.org/0009-0002-7416-6727</orcidid><orcidid>https://orcid.org/0000-0002-1380-6682</orcidid></search><sort><creationdate>202406</creationdate><title>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</title><author>Jung, Ji-Hoon ; Oh, Hong Min ; Jeong, Gyu-Jun ; Kim, Tae-Won ; Koo, Hyun Jung ; Lee, June-Goo ; Yang, Dong Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-f9f5c277369e57ea2775aa8066b790633355df562d3a7e08b4f6f7308e2cd6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aorta</topic><topic>Aorta segmentation</topic><topic>Aortic dissection</topic><topic>Aortic Dissection - diagnostic imaging</topic><topic>Computed tomography</topic><topic>Context</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Dissection</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>nnUNet</topic><topic>Segmentation</topic><topic>Texture</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Transformer</topic><topic>Transformers</topic><topic>U-Net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Ji-Hoon</creatorcontrib><creatorcontrib>Oh, Hong Min</creatorcontrib><creatorcontrib>Jeong, Gyu-Jun</creatorcontrib><creatorcontrib>Kim, Tae-Won</creatorcontrib><creatorcontrib>Koo, Hyun Jung</creatorcontrib><creatorcontrib>Lee, June-Goo</creatorcontrib><creatorcontrib>Yang, Dong Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Ji-Hoon</au><au>Oh, Hong Min</au><au>Jeong, Gyu-Jun</au><au>Kim, Tae-Won</au><au>Koo, Hyun Jung</au><au>Lee, June-Goo</au><au>Yang, Dong Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-06</date><risdate>2024</risdate><volume>175</volume><spage>108494</spage><epage>108494</epage><pages>108494-108494</pages><artnum>108494</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg).
The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer.
In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability.
This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications.
•We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38688124</pmid><doi>10.1016/j.compbiomed.2024.108494</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-6657-3549</orcidid><orcidid>https://orcid.org/0009-0005-1681-9154</orcidid><orcidid>https://orcid.org/0009-0008-7040-877X</orcidid><orcidid>https://orcid.org/0009-0002-7416-6727</orcidid><orcidid>https://orcid.org/0000-0002-1380-6682</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-06, Vol.175, p.108494-108494, Article 108494 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3049717088 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Ablation Accuracy Algorithms Aorta Aorta segmentation Aortic dissection Aortic Dissection - diagnostic imaging Computed tomography Context Coronary vessels Datasets Deep learning Diagnosis Dissection Health care facilities Humans Image enhancement Image processing Image segmentation Medical diagnosis Medical imaging nnUNet Segmentation Texture Thromboembolism Thrombosis Tomography, X-Ray Computed - methods Transformer Transformers U-Net |
title | ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZOZI-Seg:%20A%20transformer%20and%20UNet%20cascade%20network%20with%20Zoom-Out%20and%20Zoom-In%20scheme%20for%20aortic%20dissection%20segmentation%20in%20enhanced%20CT%20images&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Jung,%20Ji-Hoon&rft.date=2024-06&rft.volume=175&rft.spage=108494&rft.epage=108494&rft.pages=108494-108494&rft.artnum=108494&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108494&rft_dat=%3Cproquest_cross%3E3053785070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053785070&rft_id=info:pmid/38688124&rft_els_id=S001048252400578X&rfr_iscdi=true |