ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images

Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-06, Vol.175, p.108494-108494, Article 108494
Hauptverfasser: Jung, Ji-Hoon, Oh, Hong Min, Jeong, Gyu-Jun, Kim, Tae-Won, Koo, Hyun Jung, Lee, June-Goo, Yang, Dong Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108494
container_issue
container_start_page 108494
container_title Computers in biology and medicine
container_volume 175
creator Jung, Ji-Hoon
Oh, Hong Min
Jeong, Gyu-Jun
Kim, Tae-Won
Koo, Hyun Jung
Lee, June-Goo
Yang, Dong Hyun
description Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg). The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer. In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability. This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications. •We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.
doi_str_mv 10.1016/j.compbiomed.2024.108494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3049717088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048252400578X</els_id><sourcerecordid>3053785070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-f9f5c277369e57ea2775aa8066b790633355df562d3a7e08b4f6f7308e2cd6233</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EoqHwCsgSFy6bztq7tpdbiYBGqsiB9pKL5XhnE4esHWyHilfgqXGSVkhcONkz882M_f-E0BqmNdTiaju1YdyvXBixnzJgTUmrpmuekUmtZFdBy5vnZAJQQ9Uo1l6QVyltAaABDi_JBVdCqZo1E_J7uVjOq2-4_kCvaY7GpyHEESM1vqf3XzFTa5I1PVKP-SHE7_TB5Q1dhjBWi0M-Yadg7mmyGxyRlgHUhJidpb1LCW12oRRxPaLP5hQ4T9FvjLfY09kddaNZY3pNXgxml_DN43lJ7j9_upvdVLeLL_PZ9W1lmWC5GrqhtUxKLjpsJZpybY1RIMRKdiA4523bD61gPTcSQa2aQQySg0Jme8E4vyTvz3P3Mfw4YMp6dMnibmc8hkPSHJpO1hKUKui7f9BtOERfXleolkvVgoRCqTNlY0gp4qD3sXwp_tI16KNfeqv_-qWPfumzX6X17eOCw-pYe2p8MqgAH88AFkV-Oow6WYdH4Vwsyuo-uP9v-QMFWar1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053785070</pqid></control><display><type>article</type><title>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jung, Ji-Hoon ; Oh, Hong Min ; Jeong, Gyu-Jun ; Kim, Tae-Won ; Koo, Hyun Jung ; Lee, June-Goo ; Yang, Dong Hyun</creator><creatorcontrib>Jung, Ji-Hoon ; Oh, Hong Min ; Jeong, Gyu-Jun ; Kim, Tae-Won ; Koo, Hyun Jung ; Lee, June-Goo ; Yang, Dong Hyun</creatorcontrib><description>Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg). The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer. In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability. This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications. •We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108494</identifier><identifier>PMID: 38688124</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Ablation ; Accuracy ; Algorithms ; Aorta ; Aorta segmentation ; Aortic dissection ; Aortic Dissection - diagnostic imaging ; Computed tomography ; Context ; Coronary vessels ; Datasets ; Deep learning ; Diagnosis ; Dissection ; Health care facilities ; Humans ; Image enhancement ; Image processing ; Image segmentation ; Medical diagnosis ; Medical imaging ; nnUNet ; Segmentation ; Texture ; Thromboembolism ; Thrombosis ; Tomography, X-Ray Computed - methods ; Transformer ; Transformers ; U-Net</subject><ispartof>Computers in biology and medicine, 2024-06, Vol.175, p.108494-108494, Article 108494</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-f9f5c277369e57ea2775aa8066b790633355df562d3a7e08b4f6f7308e2cd6233</cites><orcidid>0009-0003-6657-3549 ; 0009-0005-1681-9154 ; 0009-0008-7040-877X ; 0009-0002-7416-6727 ; 0000-0002-1380-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.108494$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Ji-Hoon</creatorcontrib><creatorcontrib>Oh, Hong Min</creatorcontrib><creatorcontrib>Jeong, Gyu-Jun</creatorcontrib><creatorcontrib>Kim, Tae-Won</creatorcontrib><creatorcontrib>Koo, Hyun Jung</creatorcontrib><creatorcontrib>Lee, June-Goo</creatorcontrib><creatorcontrib>Yang, Dong Hyun</creatorcontrib><title>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg). The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer. In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability. This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications. •We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aorta</subject><subject>Aorta segmentation</subject><subject>Aortic dissection</subject><subject>Aortic Dissection - diagnostic imaging</subject><subject>Computed tomography</subject><subject>Context</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Dissection</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>nnUNet</subject><subject>Segmentation</subject><subject>Texture</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Transformer</subject><subject>Transformers</subject><subject>U-Net</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuEzEQhi0EoqHwCsgSFy6bztq7tpdbiYBGqsiB9pKL5XhnE4esHWyHilfgqXGSVkhcONkz882M_f-E0BqmNdTiaju1YdyvXBixnzJgTUmrpmuekUmtZFdBy5vnZAJQQ9Uo1l6QVyltAaABDi_JBVdCqZo1E_J7uVjOq2-4_kCvaY7GpyHEESM1vqf3XzFTa5I1PVKP-SHE7_TB5Q1dhjBWi0M-Yadg7mmyGxyRlgHUhJidpb1LCW12oRRxPaLP5hQ4T9FvjLfY09kddaNZY3pNXgxml_DN43lJ7j9_upvdVLeLL_PZ9W1lmWC5GrqhtUxKLjpsJZpybY1RIMRKdiA4523bD61gPTcSQa2aQQySg0Jme8E4vyTvz3P3Mfw4YMp6dMnibmc8hkPSHJpO1hKUKui7f9BtOERfXleolkvVgoRCqTNlY0gp4qD3sXwp_tI16KNfeqv_-qWPfumzX6X17eOCw-pYe2p8MqgAH88AFkV-Oow6WYdH4Vwsyuo-uP9v-QMFWar1</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Jung, Ji-Hoon</creator><creator>Oh, Hong Min</creator><creator>Jeong, Gyu-Jun</creator><creator>Kim, Tae-Won</creator><creator>Koo, Hyun Jung</creator><creator>Lee, June-Goo</creator><creator>Yang, Dong Hyun</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-6657-3549</orcidid><orcidid>https://orcid.org/0009-0005-1681-9154</orcidid><orcidid>https://orcid.org/0009-0008-7040-877X</orcidid><orcidid>https://orcid.org/0009-0002-7416-6727</orcidid><orcidid>https://orcid.org/0000-0002-1380-6682</orcidid></search><sort><creationdate>202406</creationdate><title>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</title><author>Jung, Ji-Hoon ; Oh, Hong Min ; Jeong, Gyu-Jun ; Kim, Tae-Won ; Koo, Hyun Jung ; Lee, June-Goo ; Yang, Dong Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-f9f5c277369e57ea2775aa8066b790633355df562d3a7e08b4f6f7308e2cd6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aorta</topic><topic>Aorta segmentation</topic><topic>Aortic dissection</topic><topic>Aortic Dissection - diagnostic imaging</topic><topic>Computed tomography</topic><topic>Context</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Dissection</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>nnUNet</topic><topic>Segmentation</topic><topic>Texture</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Transformer</topic><topic>Transformers</topic><topic>U-Net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Ji-Hoon</creatorcontrib><creatorcontrib>Oh, Hong Min</creatorcontrib><creatorcontrib>Jeong, Gyu-Jun</creatorcontrib><creatorcontrib>Kim, Tae-Won</creatorcontrib><creatorcontrib>Koo, Hyun Jung</creatorcontrib><creatorcontrib>Lee, June-Goo</creatorcontrib><creatorcontrib>Yang, Dong Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Ji-Hoon</au><au>Oh, Hong Min</au><au>Jeong, Gyu-Jun</au><au>Kim, Tae-Won</au><au>Koo, Hyun Jung</au><au>Lee, June-Goo</au><au>Yang, Dong Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-06</date><risdate>2024</risdate><volume>175</volume><spage>108494</spage><epage>108494</epage><pages>108494-108494</pages><artnum>108494</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg). The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a “3D transformer for panoptic context-awareness” and a “3D UNet for localized texture refinement.” The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer. In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability. This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications. •We address precise Aortic Dissection (AD) segmentation in CT with a novel model ZOZI-seg for effective diagnosis and treatment.•ZOZI-seg uses two-stage cascade method combining CNN and Transformer to capture global context and local texture details.•Unique Zoom-Out Zoom-In scheme applies different patch sizes: 3D Transformer for overall structure, 3D UNet for texture refinement.•ZOZI-seg's superior performance suggests potential to enhance diagnostic accuracy and treatment strategies for AD patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38688124</pmid><doi>10.1016/j.compbiomed.2024.108494</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-6657-3549</orcidid><orcidid>https://orcid.org/0009-0005-1681-9154</orcidid><orcidid>https://orcid.org/0009-0008-7040-877X</orcidid><orcidid>https://orcid.org/0009-0002-7416-6727</orcidid><orcidid>https://orcid.org/0000-0002-1380-6682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-06, Vol.175, p.108494-108494, Article 108494
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3049717088
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Ablation
Accuracy
Algorithms
Aorta
Aorta segmentation
Aortic dissection
Aortic Dissection - diagnostic imaging
Computed tomography
Context
Coronary vessels
Datasets
Deep learning
Diagnosis
Dissection
Health care facilities
Humans
Image enhancement
Image processing
Image segmentation
Medical diagnosis
Medical imaging
nnUNet
Segmentation
Texture
Thromboembolism
Thrombosis
Tomography, X-Ray Computed - methods
Transformer
Transformers
U-Net
title ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZOZI-Seg:%20A%20transformer%20and%20UNet%20cascade%20network%20with%20Zoom-Out%20and%20Zoom-In%20scheme%20for%20aortic%20dissection%20segmentation%20in%20enhanced%20CT%20images&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Jung,%20Ji-Hoon&rft.date=2024-06&rft.volume=175&rft.spage=108494&rft.epage=108494&rft.pages=108494-108494&rft.artnum=108494&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108494&rft_dat=%3Cproquest_cross%3E3053785070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053785070&rft_id=info:pmid/38688124&rft_els_id=S001048252400578X&rfr_iscdi=true