Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study

To investigate the predictive value of the pre-treatment diffusion parameters of diffusion-weighted magnetic resonance imaging (DW-MRI) using artificial intelligence (AI) for prostate-specific antigen (PSA) response in patients with low- and intermediate-risk prostate cancer (PCa) treated with stere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiography (London, England. 1995) England. 1995), 2024-05, Vol.30 (3), p.986-994
Hauptverfasser: Kedves, A., Akay, M., Akay, Y., Kisiván, K., Glavák, C., Miovecz, Á., Schiffer, Á., Kisander, Z., Lőrincz, A., Szőke, A., Sánta, B., Freihat, O., Sipos, D., Kovács, Á., Lakosi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 3
container_start_page 986
container_title Radiography (London, England. 1995)
container_volume 30
creator Kedves, A.
Akay, M.
Akay, Y.
Kisiván, K.
Glavák, C.
Miovecz, Á.
Schiffer, Á.
Kisander, Z.
Lőrincz, A.
Szőke, A.
Sánta, B.
Freihat, O.
Sipos, D.
Kovács, Á.
Lakosi, F.
description To investigate the predictive value of the pre-treatment diffusion parameters of diffusion-weighted magnetic resonance imaging (DW-MRI) using artificial intelligence (AI) for prostate-specific antigen (PSA) response in patients with low- and intermediate-risk prostate cancer (PCa) treated with stereotactic ablative radiotherapy (SABR). Retrospective evaluation was performed for 30 patients using pre-treatment multi-parametric MR image datasets between 2017 and 2021. MR-based mean- and minimum apparent diffusion coefficients (ADCmean, ADCmin) were calculated for the intraprostatic dominant lesion. Therapeutic response was assessed using PSA levels. Predictive performance was assessed by the receiver operating characteristic (ROC) analysis. Statistics performed with a significance level of p ≤ 0.05. No biochemical relapse was detected after a median follow-up of twenty-three months (range: 3–50), with a median PSA of 0.01 ng/ml (range: 0.006–2.8) at the last examination. Significant differences were observed between the pre-treatment ADCmean, ADCmin parameters, and the group averages of patients with low and high 1-year-PSA measurements (p 
doi_str_mv 10.1016/j.radi.2024.03.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3048494800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1078817424000774</els_id><sourcerecordid>3048494800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a1d2afb1d33fda5ebd28ae451a046a8bb36c06b46d1439a0f02e2a1f208257a43</originalsourceid><addsrcrecordid>eNp9UcuO1DAQjBCIXRZ-gAPykUsGP_LwIC6r1fKQVoIDnK2O3ZntIZMMtjOr-VG-h87MwpGT7XJ1dVdXUbxWcqWkat5tVxECrbTU1UqalVT1k-JS1UaX2hr1lO-ytaVVbXVRvEhpKyUztX1eXBjbtHbd2svi97eIgXymA4oDDDOKqRc72IyYyYuIaRph9CiIMRo3IlDfz4mmUewhwg4zxiQY4C-ImXryBIOgMeMw0AZPpaMYpocSxnDC444bQsYyUvop9nFKmV_CL20iq2bCMSeRIzIcxAPle5G4DKcMfhkKugFO8y7up3yPEfbH9-Ja7GmYMnPncHxZPOthSPjq8bwqfny8_X7zubz7-unLzfVd6U2tcgkqaOg7FYzpA9TYBW0Bq1qBrBqwXWcaL5uuaoKqzBpkLzVqUL2WVtctVOaqeHvWZR-_ZkzZ7Sh59g4jTnNyRla2WldWSqbqM9Wz5RSxd_vIW41Hp6Rb8nRbtzhyS55OGsd5ctGbR_254739K_kbIBM-nAnILg-E0SVPy9oDRfTZhYn-p_8H9x-5MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048494800</pqid></control><display><type>article</type><title>Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kedves, A. ; Akay, M. ; Akay, Y. ; Kisiván, K. ; Glavák, C. ; Miovecz, Á. ; Schiffer, Á. ; Kisander, Z. ; Lőrincz, A. ; Szőke, A. ; Sánta, B. ; Freihat, O. ; Sipos, D. ; Kovács, Á. ; Lakosi, F.</creator><creatorcontrib>Kedves, A. ; Akay, M. ; Akay, Y. ; Kisiván, K. ; Glavák, C. ; Miovecz, Á. ; Schiffer, Á. ; Kisander, Z. ; Lőrincz, A. ; Szőke, A. ; Sánta, B. ; Freihat, O. ; Sipos, D. ; Kovács, Á. ; Lakosi, F.</creatorcontrib><description>To investigate the predictive value of the pre-treatment diffusion parameters of diffusion-weighted magnetic resonance imaging (DW-MRI) using artificial intelligence (AI) for prostate-specific antigen (PSA) response in patients with low- and intermediate-risk prostate cancer (PCa) treated with stereotactic ablative radiotherapy (SABR). Retrospective evaluation was performed for 30 patients using pre-treatment multi-parametric MR image datasets between 2017 and 2021. MR-based mean- and minimum apparent diffusion coefficients (ADCmean, ADCmin) were calculated for the intraprostatic dominant lesion. Therapeutic response was assessed using PSA levels. Predictive performance was assessed by the receiver operating characteristic (ROC) analysis. Statistics performed with a significance level of p ≤ 0.05. No biochemical relapse was detected after a median follow-up of twenty-three months (range: 3–50), with a median PSA of 0.01 ng/ml (range: 0.006–2.8) at the last examination. Significant differences were observed between the pre-treatment ADCmean, ADCmin parameters, and the group averages of patients with low and high 1-year-PSA measurements (p &lt; 0.0001, p &lt; 0.0001). In prediction, the random forest (RF) model outperformed the decision tree (DT) and support vector machine (SVM) models by yielding area under the curves (AUC), with 0.722, 0.685, and 0.5, respectively. Our findings suggest that pre-treatment MR diffusion data may predict therapeutic response using the novel approach of machine learning in PCa patients treated with SABR. Clinicians shall measure and implement the evaluation of the suggested parameters (ADCmin, ADCmean) to provide the most accurate therapy for the patient.</description><identifier>ISSN: 1078-8174</identifier><identifier>ISSN: 1532-2831</identifier><identifier>EISSN: 1532-2831</identifier><identifier>DOI: 10.1016/j.radi.2024.03.015</identifier><identifier>PMID: 38678978</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>ADC ; Machine learning ; Multiparametric ; Prediction models ; Predictive ; Prostate cancer ; SABR</subject><ispartof>Radiography (London, England. 1995), 2024-05, Vol.30 (3), p.986-994</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-a1d2afb1d33fda5ebd28ae451a046a8bb36c06b46d1439a0f02e2a1f208257a43</cites><orcidid>0000-0001-9245-4728 ; 0000-0001-7329-3252 ; 0000-0002-0567-3744 ; 0000-0001-9615-1740 ; 0000-0002-6705-3292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.radi.2024.03.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38678978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kedves, A.</creatorcontrib><creatorcontrib>Akay, M.</creatorcontrib><creatorcontrib>Akay, Y.</creatorcontrib><creatorcontrib>Kisiván, K.</creatorcontrib><creatorcontrib>Glavák, C.</creatorcontrib><creatorcontrib>Miovecz, Á.</creatorcontrib><creatorcontrib>Schiffer, Á.</creatorcontrib><creatorcontrib>Kisander, Z.</creatorcontrib><creatorcontrib>Lőrincz, A.</creatorcontrib><creatorcontrib>Szőke, A.</creatorcontrib><creatorcontrib>Sánta, B.</creatorcontrib><creatorcontrib>Freihat, O.</creatorcontrib><creatorcontrib>Sipos, D.</creatorcontrib><creatorcontrib>Kovács, Á.</creatorcontrib><creatorcontrib>Lakosi, F.</creatorcontrib><title>Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study</title><title>Radiography (London, England. 1995)</title><addtitle>Radiography (Lond)</addtitle><description>To investigate the predictive value of the pre-treatment diffusion parameters of diffusion-weighted magnetic resonance imaging (DW-MRI) using artificial intelligence (AI) for prostate-specific antigen (PSA) response in patients with low- and intermediate-risk prostate cancer (PCa) treated with stereotactic ablative radiotherapy (SABR). Retrospective evaluation was performed for 30 patients using pre-treatment multi-parametric MR image datasets between 2017 and 2021. MR-based mean- and minimum apparent diffusion coefficients (ADCmean, ADCmin) were calculated for the intraprostatic dominant lesion. Therapeutic response was assessed using PSA levels. Predictive performance was assessed by the receiver operating characteristic (ROC) analysis. Statistics performed with a significance level of p ≤ 0.05. No biochemical relapse was detected after a median follow-up of twenty-three months (range: 3–50), with a median PSA of 0.01 ng/ml (range: 0.006–2.8) at the last examination. Significant differences were observed between the pre-treatment ADCmean, ADCmin parameters, and the group averages of patients with low and high 1-year-PSA measurements (p &lt; 0.0001, p &lt; 0.0001). In prediction, the random forest (RF) model outperformed the decision tree (DT) and support vector machine (SVM) models by yielding area under the curves (AUC), with 0.722, 0.685, and 0.5, respectively. Our findings suggest that pre-treatment MR diffusion data may predict therapeutic response using the novel approach of machine learning in PCa patients treated with SABR. Clinicians shall measure and implement the evaluation of the suggested parameters (ADCmin, ADCmean) to provide the most accurate therapy for the patient.</description><subject>ADC</subject><subject>Machine learning</subject><subject>Multiparametric</subject><subject>Prediction models</subject><subject>Predictive</subject><subject>Prostate cancer</subject><subject>SABR</subject><issn>1078-8174</issn><issn>1532-2831</issn><issn>1532-2831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQjBCIXRZ-gAPykUsGP_LwIC6r1fKQVoIDnK2O3ZntIZMMtjOr-VG-h87MwpGT7XJ1dVdXUbxWcqWkat5tVxECrbTU1UqalVT1k-JS1UaX2hr1lO-ytaVVbXVRvEhpKyUztX1eXBjbtHbd2svi97eIgXymA4oDDDOKqRc72IyYyYuIaRph9CiIMRo3IlDfz4mmUewhwg4zxiQY4C-ImXryBIOgMeMw0AZPpaMYpocSxnDC444bQsYyUvop9nFKmV_CL20iq2bCMSeRIzIcxAPle5G4DKcMfhkKugFO8y7up3yPEfbH9-Ja7GmYMnPncHxZPOthSPjq8bwqfny8_X7zubz7-unLzfVd6U2tcgkqaOg7FYzpA9TYBW0Bq1qBrBqwXWcaL5uuaoKqzBpkLzVqUL2WVtctVOaqeHvWZR-_ZkzZ7Sh59g4jTnNyRla2WldWSqbqM9Wz5RSxd_vIW41Hp6Rb8nRbtzhyS55OGsd5ctGbR_254739K_kbIBM-nAnILg-E0SVPy9oDRfTZhYn-p_8H9x-5MA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kedves, A.</creator><creator>Akay, M.</creator><creator>Akay, Y.</creator><creator>Kisiván, K.</creator><creator>Glavák, C.</creator><creator>Miovecz, Á.</creator><creator>Schiffer, Á.</creator><creator>Kisander, Z.</creator><creator>Lőrincz, A.</creator><creator>Szőke, A.</creator><creator>Sánta, B.</creator><creator>Freihat, O.</creator><creator>Sipos, D.</creator><creator>Kovács, Á.</creator><creator>Lakosi, F.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9245-4728</orcidid><orcidid>https://orcid.org/0000-0001-7329-3252</orcidid><orcidid>https://orcid.org/0000-0002-0567-3744</orcidid><orcidid>https://orcid.org/0000-0001-9615-1740</orcidid><orcidid>https://orcid.org/0000-0002-6705-3292</orcidid></search><sort><creationdate>20240501</creationdate><title>Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study</title><author>Kedves, A. ; Akay, M. ; Akay, Y. ; Kisiván, K. ; Glavák, C. ; Miovecz, Á. ; Schiffer, Á. ; Kisander, Z. ; Lőrincz, A. ; Szőke, A. ; Sánta, B. ; Freihat, O. ; Sipos, D. ; Kovács, Á. ; Lakosi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a1d2afb1d33fda5ebd28ae451a046a8bb36c06b46d1439a0f02e2a1f208257a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ADC</topic><topic>Machine learning</topic><topic>Multiparametric</topic><topic>Prediction models</topic><topic>Predictive</topic><topic>Prostate cancer</topic><topic>SABR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kedves, A.</creatorcontrib><creatorcontrib>Akay, M.</creatorcontrib><creatorcontrib>Akay, Y.</creatorcontrib><creatorcontrib>Kisiván, K.</creatorcontrib><creatorcontrib>Glavák, C.</creatorcontrib><creatorcontrib>Miovecz, Á.</creatorcontrib><creatorcontrib>Schiffer, Á.</creatorcontrib><creatorcontrib>Kisander, Z.</creatorcontrib><creatorcontrib>Lőrincz, A.</creatorcontrib><creatorcontrib>Szőke, A.</creatorcontrib><creatorcontrib>Sánta, B.</creatorcontrib><creatorcontrib>Freihat, O.</creatorcontrib><creatorcontrib>Sipos, D.</creatorcontrib><creatorcontrib>Kovács, Á.</creatorcontrib><creatorcontrib>Lakosi, F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiography (London, England. 1995)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kedves, A.</au><au>Akay, M.</au><au>Akay, Y.</au><au>Kisiván, K.</au><au>Glavák, C.</au><au>Miovecz, Á.</au><au>Schiffer, Á.</au><au>Kisander, Z.</au><au>Lőrincz, A.</au><au>Szőke, A.</au><au>Sánta, B.</au><au>Freihat, O.</au><au>Sipos, D.</au><au>Kovács, Á.</au><au>Lakosi, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study</atitle><jtitle>Radiography (London, England. 1995)</jtitle><addtitle>Radiography (Lond)</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><spage>986</spage><epage>994</epage><pages>986-994</pages><issn>1078-8174</issn><issn>1532-2831</issn><eissn>1532-2831</eissn><abstract>To investigate the predictive value of the pre-treatment diffusion parameters of diffusion-weighted magnetic resonance imaging (DW-MRI) using artificial intelligence (AI) for prostate-specific antigen (PSA) response in patients with low- and intermediate-risk prostate cancer (PCa) treated with stereotactic ablative radiotherapy (SABR). Retrospective evaluation was performed for 30 patients using pre-treatment multi-parametric MR image datasets between 2017 and 2021. MR-based mean- and minimum apparent diffusion coefficients (ADCmean, ADCmin) were calculated for the intraprostatic dominant lesion. Therapeutic response was assessed using PSA levels. Predictive performance was assessed by the receiver operating characteristic (ROC) analysis. Statistics performed with a significance level of p ≤ 0.05. No biochemical relapse was detected after a median follow-up of twenty-three months (range: 3–50), with a median PSA of 0.01 ng/ml (range: 0.006–2.8) at the last examination. Significant differences were observed between the pre-treatment ADCmean, ADCmin parameters, and the group averages of patients with low and high 1-year-PSA measurements (p &lt; 0.0001, p &lt; 0.0001). In prediction, the random forest (RF) model outperformed the decision tree (DT) and support vector machine (SVM) models by yielding area under the curves (AUC), with 0.722, 0.685, and 0.5, respectively. Our findings suggest that pre-treatment MR diffusion data may predict therapeutic response using the novel approach of machine learning in PCa patients treated with SABR. Clinicians shall measure and implement the evaluation of the suggested parameters (ADCmin, ADCmean) to provide the most accurate therapy for the patient.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38678978</pmid><doi>10.1016/j.radi.2024.03.015</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9245-4728</orcidid><orcidid>https://orcid.org/0000-0001-7329-3252</orcidid><orcidid>https://orcid.org/0000-0002-0567-3744</orcidid><orcidid>https://orcid.org/0000-0001-9615-1740</orcidid><orcidid>https://orcid.org/0000-0002-6705-3292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8174
ispartof Radiography (London, England. 1995), 2024-05, Vol.30 (3), p.986-994
issn 1078-8174
1532-2831
1532-2831
language eng
recordid cdi_proquest_miscellaneous_3048494800
source Access via ScienceDirect (Elsevier)
subjects ADC
Machine learning
Multiparametric
Prediction models
Predictive
Prostate cancer
SABR
title Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20value%20of%20magnetic%20resonance%20imaging%20diffusion%20parameters%20using%20artificial%20intelligence%20in%20low-and%20intermediate-risk%20prostate%20cancer%20patients%20treated%20with%20stereotactic%20ablative%20radiotherapy:%20A%20pilot%20study&rft.jtitle=Radiography%20(London,%20England.%201995)&rft.au=Kedves,%20A.&rft.date=2024-05-01&rft.volume=30&rft.issue=3&rft.spage=986&rft.epage=994&rft.pages=986-994&rft.issn=1078-8174&rft.eissn=1532-2831&rft_id=info:doi/10.1016/j.radi.2024.03.015&rft_dat=%3Cproquest_cross%3E3048494800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048494800&rft_id=info:pmid/38678978&rft_els_id=S1078817424000774&rfr_iscdi=true