Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution

A geopolymer is an inorganic amorphous cementitious material, emerging as an alternative sustainable binder for greener concrete production over Ordinary Portland Cement (OPC). Geopolymer concrete production promotes waste reuse since the applicable precursor materials include agricultural and indus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-04, Vol.17 (8), p.1792
Hauptverfasser: Oti, Jonathan, Adeleke, Blessing O, Anowie, Francis X, Kinuthia, John M, Ekwulo, Emma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1792
container_title Materials
container_volume 17
creator Oti, Jonathan
Adeleke, Blessing O
Anowie, Francis X
Kinuthia, John M
Ekwulo, Emma
description A geopolymer is an inorganic amorphous cementitious material, emerging as an alternative sustainable binder for greener concrete production over Ordinary Portland Cement (OPC). Geopolymer concrete production promotes waste reuse since the applicable precursor materials include agricultural and industrial waste that requires disposal, helping to reduce waste in landfills and ensuring sustainable environmental protection. This study investigates the development of an environmentally friendly sodium silicate alternative (SSA) derived from pumice powder (PP) in place of a commercial Na SiO solution at a 10 M concentration. Six concrete batches were produced at alkaline/precursor (A/P) ratios of 0.1, 0.2, 0.3, 0.4, and 0.5. The geopolymer mix AF4, with an A/P ratio of 0.4, became the optimum geopolymer concrete design; however, it recorded lower compressive, tensile splitting, and flexural strengths, respectively, against the control OPC concrete. The geopolymer formulations, however, obtained 28-day-hardened concrete densities comparable to the control concrete. The 28-day compressive strength of the OPC concrete was 29.4 MPa, higher than the 18.8 MPa recorded for AF4. However, the 56-day strength of AF4 improved to 22.4 MPa, an around 19% increase compared to the 30.8 MPa achieved by the control mix on day 56, having experienced only a 5% strength increase. The low mechanical performances of the geopolymer formulation could be attributed to extra water added to the original geopolymer design to improve the workability of the geopolymer mix. Therefore, the SSA alkaline solution using PP showed some potential for developing geopolymer concrete for low-strength construction applications.
doi_str_mv 10.3390/ma17081792
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047950849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793560531</galeid><sourcerecordid>A793560531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3eddd7f09ed6609e40e0e3d6cb5611f131065c5b32c1ced88791fe610c1de03d3</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhkNRVKw3_oAS8KYU1mZOdrObSzlWWzhF4ej1kk1mbSSbHJON4r839dgPnMBMCM87meEl5BjYKeeSfZ0UtKyDVi4-kAOQUlQg63rnv_s-OUrpnpXgHLqF3CP7vBMth1oekPwT9S_lrVaOXsewwThbTDSMVNF1TrOyXg0O6So8VUsVh-DpJYZNcM8TRroMXkeckd4m6--K5DpPVmN1jtE-oqHrYGye6Nq68kHB1sHl2Qb_keyOyiU8equH5Pbi283ye7W6uvyxPFtVuqw2VxyNMe3IJBohSq4ZMuRG6KERACNwYKLRzcAXGjSarmsljCiAaTDIuOGH5PO27yaGh4xp7iebNDqnPIaces7qVjasq2VBT96h9yFHX6Z7pRirm6Yu1OmWulMOe-vHMEelyzFYFg8eR1vez1rJG8EaDkXwZSvQMaQUcew30U4qPvfA-t8G9v8MLPCntxnyMKH5i_6xi78AJFaVLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047004554</pqid></control><display><type>article</type><title>Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Oti, Jonathan ; Adeleke, Blessing O ; Anowie, Francis X ; Kinuthia, John M ; Ekwulo, Emma</creator><creatorcontrib>Oti, Jonathan ; Adeleke, Blessing O ; Anowie, Francis X ; Kinuthia, John M ; Ekwulo, Emma</creatorcontrib><description>A geopolymer is an inorganic amorphous cementitious material, emerging as an alternative sustainable binder for greener concrete production over Ordinary Portland Cement (OPC). Geopolymer concrete production promotes waste reuse since the applicable precursor materials include agricultural and industrial waste that requires disposal, helping to reduce waste in landfills and ensuring sustainable environmental protection. This study investigates the development of an environmentally friendly sodium silicate alternative (SSA) derived from pumice powder (PP) in place of a commercial Na SiO solution at a 10 M concentration. Six concrete batches were produced at alkaline/precursor (A/P) ratios of 0.1, 0.2, 0.3, 0.4, and 0.5. The geopolymer mix AF4, with an A/P ratio of 0.4, became the optimum geopolymer concrete design; however, it recorded lower compressive, tensile splitting, and flexural strengths, respectively, against the control OPC concrete. The geopolymer formulations, however, obtained 28-day-hardened concrete densities comparable to the control concrete. The 28-day compressive strength of the OPC concrete was 29.4 MPa, higher than the 18.8 MPa recorded for AF4. However, the 56-day strength of AF4 improved to 22.4 MPa, an around 19% increase compared to the 30.8 MPa achieved by the control mix on day 56, having experienced only a 5% strength increase. The low mechanical performances of the geopolymer formulation could be attributed to extra water added to the original geopolymer design to improve the workability of the geopolymer mix. Therefore, the SSA alkaline solution using PP showed some potential for developing geopolymer concrete for low-strength construction applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17081792</identifier><identifier>PMID: 38673149</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agricultural wastes ; Alkalinity ; Amorphous materials ; Carbon dioxide ; Caustic soda ; Cement ; Compressive strength ; Concrete ; Concrete mixing ; Environmental impact ; Environmental protection ; Flexural strength ; Geopolymers ; Industrial wastes ; Mechanical properties ; Portland cements ; Precursors ; Pumice ; Silica ; Sodium ; Sodium silicates ; Waste materials ; Workability</subject><ispartof>Materials, 2024-04, Vol.17 (8), p.1792</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-3eddd7f09ed6609e40e0e3d6cb5611f131065c5b32c1ced88791fe610c1de03d3</citedby><cites>FETCH-LOGICAL-c390t-3eddd7f09ed6609e40e0e3d6cb5611f131065c5b32c1ced88791fe610c1de03d3</cites><orcidid>0000-0002-6702-4811 ; 0000-0002-5968-5089 ; 0000-0002-3273-846X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38673149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oti, Jonathan</creatorcontrib><creatorcontrib>Adeleke, Blessing O</creatorcontrib><creatorcontrib>Anowie, Francis X</creatorcontrib><creatorcontrib>Kinuthia, John M</creatorcontrib><creatorcontrib>Ekwulo, Emma</creatorcontrib><title>Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>A geopolymer is an inorganic amorphous cementitious material, emerging as an alternative sustainable binder for greener concrete production over Ordinary Portland Cement (OPC). Geopolymer concrete production promotes waste reuse since the applicable precursor materials include agricultural and industrial waste that requires disposal, helping to reduce waste in landfills and ensuring sustainable environmental protection. This study investigates the development of an environmentally friendly sodium silicate alternative (SSA) derived from pumice powder (PP) in place of a commercial Na SiO solution at a 10 M concentration. Six concrete batches were produced at alkaline/precursor (A/P) ratios of 0.1, 0.2, 0.3, 0.4, and 0.5. The geopolymer mix AF4, with an A/P ratio of 0.4, became the optimum geopolymer concrete design; however, it recorded lower compressive, tensile splitting, and flexural strengths, respectively, against the control OPC concrete. The geopolymer formulations, however, obtained 28-day-hardened concrete densities comparable to the control concrete. The 28-day compressive strength of the OPC concrete was 29.4 MPa, higher than the 18.8 MPa recorded for AF4. However, the 56-day strength of AF4 improved to 22.4 MPa, an around 19% increase compared to the 30.8 MPa achieved by the control mix on day 56, having experienced only a 5% strength increase. The low mechanical performances of the geopolymer formulation could be attributed to extra water added to the original geopolymer design to improve the workability of the geopolymer mix. Therefore, the SSA alkaline solution using PP showed some potential for developing geopolymer concrete for low-strength construction applications.</description><subject>Agricultural wastes</subject><subject>Alkalinity</subject><subject>Amorphous materials</subject><subject>Carbon dioxide</subject><subject>Caustic soda</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Concrete mixing</subject><subject>Environmental impact</subject><subject>Environmental protection</subject><subject>Flexural strength</subject><subject>Geopolymers</subject><subject>Industrial wastes</subject><subject>Mechanical properties</subject><subject>Portland cements</subject><subject>Precursors</subject><subject>Pumice</subject><subject>Silica</subject><subject>Sodium</subject><subject>Sodium silicates</subject><subject>Waste materials</subject><subject>Workability</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LHTEQhkNRVKw3_oAS8KYU1mZOdrObSzlWWzhF4ej1kk1mbSSbHJON4r839dgPnMBMCM87meEl5BjYKeeSfZ0UtKyDVi4-kAOQUlQg63rnv_s-OUrpnpXgHLqF3CP7vBMth1oekPwT9S_lrVaOXsewwThbTDSMVNF1TrOyXg0O6So8VUsVh-DpJYZNcM8TRroMXkeckd4m6--K5DpPVmN1jtE-oqHrYGye6Nq68kHB1sHl2Qb_keyOyiU8equH5Pbi283ye7W6uvyxPFtVuqw2VxyNMe3IJBohSq4ZMuRG6KERACNwYKLRzcAXGjSarmsljCiAaTDIuOGH5PO27yaGh4xp7iebNDqnPIaces7qVjasq2VBT96h9yFHX6Z7pRirm6Yu1OmWulMOe-vHMEelyzFYFg8eR1vez1rJG8EaDkXwZSvQMaQUcew30U4qPvfA-t8G9v8MLPCntxnyMKH5i_6xi78AJFaVLw</recordid><startdate>20240413</startdate><enddate>20240413</enddate><creator>Oti, Jonathan</creator><creator>Adeleke, Blessing O</creator><creator>Anowie, Francis X</creator><creator>Kinuthia, John M</creator><creator>Ekwulo, Emma</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6702-4811</orcidid><orcidid>https://orcid.org/0000-0002-5968-5089</orcidid><orcidid>https://orcid.org/0000-0002-3273-846X</orcidid></search><sort><creationdate>20240413</creationdate><title>Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution</title><author>Oti, Jonathan ; Adeleke, Blessing O ; Anowie, Francis X ; Kinuthia, John M ; Ekwulo, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3eddd7f09ed6609e40e0e3d6cb5611f131065c5b32c1ced88791fe610c1de03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural wastes</topic><topic>Alkalinity</topic><topic>Amorphous materials</topic><topic>Carbon dioxide</topic><topic>Caustic soda</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Concrete mixing</topic><topic>Environmental impact</topic><topic>Environmental protection</topic><topic>Flexural strength</topic><topic>Geopolymers</topic><topic>Industrial wastes</topic><topic>Mechanical properties</topic><topic>Portland cements</topic><topic>Precursors</topic><topic>Pumice</topic><topic>Silica</topic><topic>Sodium</topic><topic>Sodium silicates</topic><topic>Waste materials</topic><topic>Workability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oti, Jonathan</creatorcontrib><creatorcontrib>Adeleke, Blessing O</creatorcontrib><creatorcontrib>Anowie, Francis X</creatorcontrib><creatorcontrib>Kinuthia, John M</creatorcontrib><creatorcontrib>Ekwulo, Emma</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oti, Jonathan</au><au>Adeleke, Blessing O</au><au>Anowie, Francis X</au><au>Kinuthia, John M</au><au>Ekwulo, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-13</date><risdate>2024</risdate><volume>17</volume><issue>8</issue><spage>1792</spage><pages>1792-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A geopolymer is an inorganic amorphous cementitious material, emerging as an alternative sustainable binder for greener concrete production over Ordinary Portland Cement (OPC). Geopolymer concrete production promotes waste reuse since the applicable precursor materials include agricultural and industrial waste that requires disposal, helping to reduce waste in landfills and ensuring sustainable environmental protection. This study investigates the development of an environmentally friendly sodium silicate alternative (SSA) derived from pumice powder (PP) in place of a commercial Na SiO solution at a 10 M concentration. Six concrete batches were produced at alkaline/precursor (A/P) ratios of 0.1, 0.2, 0.3, 0.4, and 0.5. The geopolymer mix AF4, with an A/P ratio of 0.4, became the optimum geopolymer concrete design; however, it recorded lower compressive, tensile splitting, and flexural strengths, respectively, against the control OPC concrete. The geopolymer formulations, however, obtained 28-day-hardened concrete densities comparable to the control concrete. The 28-day compressive strength of the OPC concrete was 29.4 MPa, higher than the 18.8 MPa recorded for AF4. However, the 56-day strength of AF4 improved to 22.4 MPa, an around 19% increase compared to the 30.8 MPa achieved by the control mix on day 56, having experienced only a 5% strength increase. The low mechanical performances of the geopolymer formulation could be attributed to extra water added to the original geopolymer design to improve the workability of the geopolymer mix. Therefore, the SSA alkaline solution using PP showed some potential for developing geopolymer concrete for low-strength construction applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38673149</pmid><doi>10.3390/ma17081792</doi><orcidid>https://orcid.org/0000-0002-6702-4811</orcidid><orcidid>https://orcid.org/0000-0002-5968-5089</orcidid><orcidid>https://orcid.org/0000-0002-3273-846X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-04, Vol.17 (8), p.1792
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3047950849
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agricultural wastes
Alkalinity
Amorphous materials
Carbon dioxide
Caustic soda
Cement
Compressive strength
Concrete
Concrete mixing
Environmental impact
Environmental protection
Flexural strength
Geopolymers
Industrial wastes
Mechanical properties
Portland cements
Precursors
Pumice
Silica
Sodium
Sodium silicates
Waste materials
Workability
title Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20a%20Sustainable%20Low-Carbon%20Geopolymer%20Concrete%20Using%20a%20Pumice-Derived%20Sodium%20Silicate%20Solution&rft.jtitle=Materials&rft.au=Oti,%20Jonathan&rft.date=2024-04-13&rft.volume=17&rft.issue=8&rft.spage=1792&rft.pages=1792-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17081792&rft_dat=%3Cgale_proqu%3EA793560531%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047004554&rft_id=info:pmid/38673149&rft_galeid=A793560531&rfr_iscdi=true