Comparative Analysis of Crosslinking Methods and Their Impact on the Physicochemical Properties of SA/PVA Hydrogels
Hydrogels, versatile materials used in various applications such as medicine, possess properties crucial for their specific applications, significantly influenced by their preparation methods. This study synthesized 18 different types of hydrogels using sodium alginate (SA) and two molecular weights...
Gespeichert in:
Veröffentlicht in: | Materials 2024-04, Vol.17 (8), p.1816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1816 |
container_title | Materials |
container_volume | 17 |
creator | Niewiadomski, Konrad Szopa, Daniel Pstrowska, Katarzyna Wróbel, Paulina Witek-Krowiak, Anna |
description | Hydrogels, versatile materials used in various applications such as medicine, possess properties crucial for their specific applications, significantly influenced by their preparation methods. This study synthesized 18 different types of hydrogels using sodium alginate (SA) and two molecular weights of polyvinyl alcohol (PVA). Crosslinking agents such as aqueous solutions of calcium (Ca
) and copper (Cu
) ions and solutions of these ions in boric acid were utilized. The hydrogels were subjected to compression strength tests and drying kinetics analysis. Additionally, six hydrogel variants containing larger PVA particles underwent Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) post-drying. Some samples were lyophilized, and their surface morphology was examined using scanning electron microscopy (SEM). The results indicate that the choice of crosslinking method significantly impacts the physicochemical properties of the hydrogels. Crosslinking in solutions with higher concentrations of crosslinking ions enhanced mechanical properties and thermal stability. Conversely, using copper ions instead of calcium resulted in slower drying kinetics and reduced thermal stability. Notably, employing boric acid as a crosslinking agent for hydrogels containing heavier PVA molecules led to considerable improvements in mechanical properties and thermal stability. |
doi_str_mv | 10.3390/ma17081816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047950802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047005986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7530e4d70258f3d43f3c70a3bfd0139d789c986d7f10185b7202decb9ac2bf833</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMoTuZe_AAS8EWEuaS3XZLHMdQNJg6cvpY0SdfMtplJJ-zb27n5B-_LvQ-_cy6cg9AFJbcAggwqSRnhlNPhETqjQgz7VMTx8Z-7g3ohrEg7AJRH4hR1gA8ZUAZnKIxdtZZeNvbD4FEty22wAbscj70LobT1m62X-NE0hdMBy1rjRWGsx9NWpRrsatwUBs-LVqacKkxllSzx3Lu18Y01X1bPo8H8dYQnW-3d0pThHJ3ksgymd9hd9HJ_txhP-rOnh-l4NOsrSGjTZwkQE2tGooTnoGPIQTEiIcs1oSA040IJPtQsp4TyJGMRibRRmZAqynIO0EXXe9-1d-8bE5q0skGZspS1cZuQAomZSAgnUYte_UNXbuPbOPYUIUn7qaVu9pTaheNNnq69raTfppSkuzbS3zZa-PJguckqo3_Q7-zhE-tvg-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047005986</pqid></control><display><type>article</type><title>Comparative Analysis of Crosslinking Methods and Their Impact on the Physicochemical Properties of SA/PVA Hydrogels</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Niewiadomski, Konrad ; Szopa, Daniel ; Pstrowska, Katarzyna ; Wróbel, Paulina ; Witek-Krowiak, Anna</creator><creatorcontrib>Niewiadomski, Konrad ; Szopa, Daniel ; Pstrowska, Katarzyna ; Wróbel, Paulina ; Witek-Krowiak, Anna</creatorcontrib><description>Hydrogels, versatile materials used in various applications such as medicine, possess properties crucial for their specific applications, significantly influenced by their preparation methods. This study synthesized 18 different types of hydrogels using sodium alginate (SA) and two molecular weights of polyvinyl alcohol (PVA). Crosslinking agents such as aqueous solutions of calcium (Ca
) and copper (Cu
) ions and solutions of these ions in boric acid were utilized. The hydrogels were subjected to compression strength tests and drying kinetics analysis. Additionally, six hydrogel variants containing larger PVA particles underwent Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) post-drying. Some samples were lyophilized, and their surface morphology was examined using scanning electron microscopy (SEM). The results indicate that the choice of crosslinking method significantly impacts the physicochemical properties of the hydrogels. Crosslinking in solutions with higher concentrations of crosslinking ions enhanced mechanical properties and thermal stability. Conversely, using copper ions instead of calcium resulted in slower drying kinetics and reduced thermal stability. Notably, employing boric acid as a crosslinking agent for hydrogels containing heavier PVA molecules led to considerable improvements in mechanical properties and thermal stability.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17081816</identifier><identifier>PMID: 38673173</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Aqueous solutions ; Biocompatibility ; Calcium ions ; Compression tests ; Compressive strength ; Copper ; Copper converters ; Cost analysis ; Crosslinking ; Fourier transforms ; Hydrogels ; Infrared analysis ; Kinetics ; Mechanical properties ; Moisture content ; Polymers ; Polyvinyl alcohol ; Scanning electron microscopy ; Sensors ; Sodium ; Sodium alginate ; Spectrum analysis ; Thermal stability ; Thermogravimetric analysis ; Tissue engineering</subject><ispartof>Materials, 2024-04, Vol.17 (8), p.1816</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7530e4d70258f3d43f3c70a3bfd0139d789c986d7f10185b7202decb9ac2bf833</citedby><cites>FETCH-LOGICAL-c351t-7530e4d70258f3d43f3c70a3bfd0139d789c986d7f10185b7202decb9ac2bf833</cites><orcidid>0000-0001-5706-0133 ; 0000-0003-2082-4624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38673173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niewiadomski, Konrad</creatorcontrib><creatorcontrib>Szopa, Daniel</creatorcontrib><creatorcontrib>Pstrowska, Katarzyna</creatorcontrib><creatorcontrib>Wróbel, Paulina</creatorcontrib><creatorcontrib>Witek-Krowiak, Anna</creatorcontrib><title>Comparative Analysis of Crosslinking Methods and Their Impact on the Physicochemical Properties of SA/PVA Hydrogels</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Hydrogels, versatile materials used in various applications such as medicine, possess properties crucial for their specific applications, significantly influenced by their preparation methods. This study synthesized 18 different types of hydrogels using sodium alginate (SA) and two molecular weights of polyvinyl alcohol (PVA). Crosslinking agents such as aqueous solutions of calcium (Ca
) and copper (Cu
) ions and solutions of these ions in boric acid were utilized. The hydrogels were subjected to compression strength tests and drying kinetics analysis. Additionally, six hydrogel variants containing larger PVA particles underwent Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) post-drying. Some samples were lyophilized, and their surface morphology was examined using scanning electron microscopy (SEM). The results indicate that the choice of crosslinking method significantly impacts the physicochemical properties of the hydrogels. Crosslinking in solutions with higher concentrations of crosslinking ions enhanced mechanical properties and thermal stability. Conversely, using copper ions instead of calcium resulted in slower drying kinetics and reduced thermal stability. Notably, employing boric acid as a crosslinking agent for hydrogels containing heavier PVA molecules led to considerable improvements in mechanical properties and thermal stability.</description><subject>Acids</subject><subject>Aqueous solutions</subject><subject>Biocompatibility</subject><subject>Calcium ions</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Cost analysis</subject><subject>Crosslinking</subject><subject>Fourier transforms</subject><subject>Hydrogels</subject><subject>Infrared analysis</subject><subject>Kinetics</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Sodium</subject><subject>Sodium alginate</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV9LwzAUxYMoTuZe_AAS8EWEuaS3XZLHMdQNJg6cvpY0SdfMtplJJ-zb27n5B-_LvQ-_cy6cg9AFJbcAggwqSRnhlNPhETqjQgz7VMTx8Z-7g3ohrEg7AJRH4hR1gA8ZUAZnKIxdtZZeNvbD4FEty22wAbscj70LobT1m62X-NE0hdMBy1rjRWGsx9NWpRrsatwUBs-LVqacKkxllSzx3Lu18Y01X1bPo8H8dYQnW-3d0pThHJ3ksgymd9hd9HJ_txhP-rOnh-l4NOsrSGjTZwkQE2tGooTnoGPIQTEiIcs1oSA040IJPtQsp4TyJGMRibRRmZAqynIO0EXXe9-1d-8bE5q0skGZspS1cZuQAomZSAgnUYte_UNXbuPbOPYUIUn7qaVu9pTaheNNnq69raTfppSkuzbS3zZa-PJguckqo3_Q7-zhE-tvg-c</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Niewiadomski, Konrad</creator><creator>Szopa, Daniel</creator><creator>Pstrowska, Katarzyna</creator><creator>Wróbel, Paulina</creator><creator>Witek-Krowiak, Anna</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5706-0133</orcidid><orcidid>https://orcid.org/0000-0003-2082-4624</orcidid></search><sort><creationdate>20240415</creationdate><title>Comparative Analysis of Crosslinking Methods and Their Impact on the Physicochemical Properties of SA/PVA Hydrogels</title><author>Niewiadomski, Konrad ; Szopa, Daniel ; Pstrowska, Katarzyna ; Wróbel, Paulina ; Witek-Krowiak, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7530e4d70258f3d43f3c70a3bfd0139d789c986d7f10185b7202decb9ac2bf833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Aqueous solutions</topic><topic>Biocompatibility</topic><topic>Calcium ions</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Cost analysis</topic><topic>Crosslinking</topic><topic>Fourier transforms</topic><topic>Hydrogels</topic><topic>Infrared analysis</topic><topic>Kinetics</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Sodium</topic><topic>Sodium alginate</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niewiadomski, Konrad</creatorcontrib><creatorcontrib>Szopa, Daniel</creatorcontrib><creatorcontrib>Pstrowska, Katarzyna</creatorcontrib><creatorcontrib>Wróbel, Paulina</creatorcontrib><creatorcontrib>Witek-Krowiak, Anna</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niewiadomski, Konrad</au><au>Szopa, Daniel</au><au>Pstrowska, Katarzyna</au><au>Wróbel, Paulina</au><au>Witek-Krowiak, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Crosslinking Methods and Their Impact on the Physicochemical Properties of SA/PVA Hydrogels</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-15</date><risdate>2024</risdate><volume>17</volume><issue>8</issue><spage>1816</spage><pages>1816-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Hydrogels, versatile materials used in various applications such as medicine, possess properties crucial for their specific applications, significantly influenced by their preparation methods. This study synthesized 18 different types of hydrogels using sodium alginate (SA) and two molecular weights of polyvinyl alcohol (PVA). Crosslinking agents such as aqueous solutions of calcium (Ca
) and copper (Cu
) ions and solutions of these ions in boric acid were utilized. The hydrogels were subjected to compression strength tests and drying kinetics analysis. Additionally, six hydrogel variants containing larger PVA particles underwent Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) post-drying. Some samples were lyophilized, and their surface morphology was examined using scanning electron microscopy (SEM). The results indicate that the choice of crosslinking method significantly impacts the physicochemical properties of the hydrogels. Crosslinking in solutions with higher concentrations of crosslinking ions enhanced mechanical properties and thermal stability. Conversely, using copper ions instead of calcium resulted in slower drying kinetics and reduced thermal stability. Notably, employing boric acid as a crosslinking agent for hydrogels containing heavier PVA molecules led to considerable improvements in mechanical properties and thermal stability.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38673173</pmid><doi>10.3390/ma17081816</doi><orcidid>https://orcid.org/0000-0001-5706-0133</orcidid><orcidid>https://orcid.org/0000-0003-2082-4624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-04, Vol.17 (8), p.1816 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3047950802 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Aqueous solutions Biocompatibility Calcium ions Compression tests Compressive strength Copper Copper converters Cost analysis Crosslinking Fourier transforms Hydrogels Infrared analysis Kinetics Mechanical properties Moisture content Polymers Polyvinyl alcohol Scanning electron microscopy Sensors Sodium Sodium alginate Spectrum analysis Thermal stability Thermogravimetric analysis Tissue engineering |
title | Comparative Analysis of Crosslinking Methods and Their Impact on the Physicochemical Properties of SA/PVA Hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Crosslinking%20Methods%20and%20Their%20Impact%20on%20the%20Physicochemical%20Properties%20of%20SA/PVA%20Hydrogels&rft.jtitle=Materials&rft.au=Niewiadomski,%20Konrad&rft.date=2024-04-15&rft.volume=17&rft.issue=8&rft.spage=1816&rft.pages=1816-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17081816&rft_dat=%3Cproquest_cross%3E3047005986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047005986&rft_id=info:pmid/38673173&rfr_iscdi=true |