A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method
Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray d...
Gespeichert in:
Veröffentlicht in: | Materials 2024-04, Vol.17 (8), p.1894 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1894 |
container_title | Materials |
container_volume | 17 |
creator | Shameem, Abdul Samad Murugan, Anbazhagan Siva, Vadivel Palanisamy, Govindasamy Kim, Ikhyun Lee, Jintae Paramasivam, Sivaprakash |
description | Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors. |
doi_str_mv | 10.3390/ma17081894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047950569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047005083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</originalsourceid><addsrcrecordid>eNpd0VFLwzAQB_AiCo7pi58g4IsIdZemXZPHOZwT5iZsPpcsvbqOtqmXVNi3tzpB8eC4e_hxHPyD4IrDnRAKRrXmKUguVXwSDLhS45CrOD79s58Hl87toS8huIzUIPATNi_fduELUmGp1o1Btu5aJKNbbUpvid1rhzmzTQ-RNJldaXTFNli3lfYYzgiRLcvRullFbKkb6zx1xneEjn2Ums0POVm_w_54xZ7R72x-EZwVunJ4-TOHwevsYTOdh4vV49N0sgiNiKQPUYACboxUKKHvRCuZxwJNKlMTxUrIQo0l6HjLCw64LRKeRhIkRCIvTIJiGNwc77Zk3zt0PqtLZ7CqdIO2c5mAOFUJJGPV0-t_dG87avrvvhVAAlL06vaoDFnnCIuspbLWdMg4ZF8ZZL8ZiE_tTHh5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047005083</pqid></control><display><type>article</type><title>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shameem, Abdul Samad ; Murugan, Anbazhagan ; Siva, Vadivel ; Palanisamy, Govindasamy ; Kim, Ikhyun ; Lee, Jintae ; Paramasivam, Sivaprakash</creator><creatorcontrib>Shameem, Abdul Samad ; Murugan, Anbazhagan ; Siva, Vadivel ; Palanisamy, Govindasamy ; Kim, Ikhyun ; Lee, Jintae ; Paramasivam, Sivaprakash</creatorcontrib><description>Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17081894</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Capacitance ; Carbon ; Doping ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Energy resources ; Energy storage ; Fourier transforms ; Functional groups ; Metal oxides ; Morphology ; Nanocomposites ; Nanomaterials ; Nickel ; Photomicrographs ; Polymers ; Supercapacitors ; Tin dioxide</subject><ispartof>Materials, 2024-04, Vol.17 (8), p.1894</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</citedby><cites>FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</cites><orcidid>0000-0003-1383-1682 ; 0000-0002-2241-7910 ; 0000-0003-4092-3873 ; 0000-0002-5916-9244 ; 0000-0001-8461-4795 ; 0000-0002-7808-5265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shameem, Abdul Samad</creatorcontrib><creatorcontrib>Murugan, Anbazhagan</creatorcontrib><creatorcontrib>Siva, Vadivel</creatorcontrib><creatorcontrib>Palanisamy, Govindasamy</creatorcontrib><creatorcontrib>Kim, Ikhyun</creatorcontrib><creatorcontrib>Lee, Jintae</creatorcontrib><creatorcontrib>Paramasivam, Sivaprakash</creatorcontrib><title>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</title><title>Materials</title><description>Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.</description><subject>Capacitance</subject><subject>Carbon</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nickel</subject><subject>Photomicrographs</subject><subject>Polymers</subject><subject>Supercapacitors</subject><subject>Tin dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpd0VFLwzAQB_AiCo7pi58g4IsIdZemXZPHOZwT5iZsPpcsvbqOtqmXVNi3tzpB8eC4e_hxHPyD4IrDnRAKRrXmKUguVXwSDLhS45CrOD79s58Hl87toS8huIzUIPATNi_fduELUmGp1o1Btu5aJKNbbUpvid1rhzmzTQ-RNJldaXTFNli3lfYYzgiRLcvRullFbKkb6zx1xneEjn2Ums0POVm_w_54xZ7R72x-EZwVunJ4-TOHwevsYTOdh4vV49N0sgiNiKQPUYACboxUKKHvRCuZxwJNKlMTxUrIQo0l6HjLCw64LRKeRhIkRCIvTIJiGNwc77Zk3zt0PqtLZ7CqdIO2c5mAOFUJJGPV0-t_dG87avrvvhVAAlL06vaoDFnnCIuspbLWdMg4ZF8ZZL8ZiE_tTHh5</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Shameem, Abdul Samad</creator><creator>Murugan, Anbazhagan</creator><creator>Siva, Vadivel</creator><creator>Palanisamy, Govindasamy</creator><creator>Kim, Ikhyun</creator><creator>Lee, Jintae</creator><creator>Paramasivam, Sivaprakash</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1383-1682</orcidid><orcidid>https://orcid.org/0000-0002-2241-7910</orcidid><orcidid>https://orcid.org/0000-0003-4092-3873</orcidid><orcidid>https://orcid.org/0000-0002-5916-9244</orcidid><orcidid>https://orcid.org/0000-0001-8461-4795</orcidid><orcidid>https://orcid.org/0000-0002-7808-5265</orcidid></search><sort><creationdate>20240419</creationdate><title>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</title><author>Shameem, Abdul Samad ; Murugan, Anbazhagan ; Siva, Vadivel ; Palanisamy, Govindasamy ; Kim, Ikhyun ; Lee, Jintae ; Paramasivam, Sivaprakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Carbon</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nickel</topic><topic>Photomicrographs</topic><topic>Polymers</topic><topic>Supercapacitors</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shameem, Abdul Samad</creatorcontrib><creatorcontrib>Murugan, Anbazhagan</creatorcontrib><creatorcontrib>Siva, Vadivel</creatorcontrib><creatorcontrib>Palanisamy, Govindasamy</creatorcontrib><creatorcontrib>Kim, Ikhyun</creatorcontrib><creatorcontrib>Lee, Jintae</creatorcontrib><creatorcontrib>Paramasivam, Sivaprakash</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shameem, Abdul Samad</au><au>Murugan, Anbazhagan</au><au>Siva, Vadivel</au><au>Palanisamy, Govindasamy</au><au>Kim, Ikhyun</au><au>Lee, Jintae</au><au>Paramasivam, Sivaprakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</atitle><jtitle>Materials</jtitle><date>2024-04-19</date><risdate>2024</risdate><volume>17</volume><issue>8</issue><spage>1894</spage><pages>1894-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17081894</doi><orcidid>https://orcid.org/0000-0003-1383-1682</orcidid><orcidid>https://orcid.org/0000-0002-2241-7910</orcidid><orcidid>https://orcid.org/0000-0003-4092-3873</orcidid><orcidid>https://orcid.org/0000-0002-5916-9244</orcidid><orcidid>https://orcid.org/0000-0001-8461-4795</orcidid><orcidid>https://orcid.org/0000-0002-7808-5265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-04, Vol.17 (8), p.1894 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3047950569 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Capacitance Carbon Doping Electrochemical analysis Electrode materials Electrodes Electrolytes Energy resources Energy storage Fourier transforms Functional groups Metal oxides Morphology Nanocomposites Nanomaterials Nickel Photomicrographs Polymers Supercapacitors Tin dioxide |
title | A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Performance%20Supercapacitor%20Based%20on%20Hierarchical%20Template-Free%20Ni/SnO2%20Nanostructures%20via%20Hydrothermal%20Method&rft.jtitle=Materials&rft.au=Shameem,%20Abdul%20Samad&rft.date=2024-04-19&rft.volume=17&rft.issue=8&rft.spage=1894&rft.pages=1894-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17081894&rft_dat=%3Cproquest_cross%3E3047005083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047005083&rft_id=info:pmid/&rfr_iscdi=true |