A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method

Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-04, Vol.17 (8), p.1894
Hauptverfasser: Shameem, Abdul Samad, Murugan, Anbazhagan, Siva, Vadivel, Palanisamy, Govindasamy, Kim, Ikhyun, Lee, Jintae, Paramasivam, Sivaprakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1894
container_title Materials
container_volume 17
creator Shameem, Abdul Samad
Murugan, Anbazhagan
Siva, Vadivel
Palanisamy, Govindasamy
Kim, Ikhyun
Lee, Jintae
Paramasivam, Sivaprakash
description Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.
doi_str_mv 10.3390/ma17081894
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047950569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047005083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</originalsourceid><addsrcrecordid>eNpd0VFLwzAQB_AiCo7pi58g4IsIdZemXZPHOZwT5iZsPpcsvbqOtqmXVNi3tzpB8eC4e_hxHPyD4IrDnRAKRrXmKUguVXwSDLhS45CrOD79s58Hl87toS8huIzUIPATNi_fduELUmGp1o1Btu5aJKNbbUpvid1rhzmzTQ-RNJldaXTFNli3lfYYzgiRLcvRullFbKkb6zx1xneEjn2Ums0POVm_w_54xZ7R72x-EZwVunJ4-TOHwevsYTOdh4vV49N0sgiNiKQPUYACboxUKKHvRCuZxwJNKlMTxUrIQo0l6HjLCw64LRKeRhIkRCIvTIJiGNwc77Zk3zt0PqtLZ7CqdIO2c5mAOFUJJGPV0-t_dG87avrvvhVAAlL06vaoDFnnCIuspbLWdMg4ZF8ZZL8ZiE_tTHh5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047005083</pqid></control><display><type>article</type><title>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shameem, Abdul Samad ; Murugan, Anbazhagan ; Siva, Vadivel ; Palanisamy, Govindasamy ; Kim, Ikhyun ; Lee, Jintae ; Paramasivam, Sivaprakash</creator><creatorcontrib>Shameem, Abdul Samad ; Murugan, Anbazhagan ; Siva, Vadivel ; Palanisamy, Govindasamy ; Kim, Ikhyun ; Lee, Jintae ; Paramasivam, Sivaprakash</creatorcontrib><description>Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17081894</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Capacitance ; Carbon ; Doping ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Energy resources ; Energy storage ; Fourier transforms ; Functional groups ; Metal oxides ; Morphology ; Nanocomposites ; Nanomaterials ; Nickel ; Photomicrographs ; Polymers ; Supercapacitors ; Tin dioxide</subject><ispartof>Materials, 2024-04, Vol.17 (8), p.1894</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</citedby><cites>FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</cites><orcidid>0000-0003-1383-1682 ; 0000-0002-2241-7910 ; 0000-0003-4092-3873 ; 0000-0002-5916-9244 ; 0000-0001-8461-4795 ; 0000-0002-7808-5265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shameem, Abdul Samad</creatorcontrib><creatorcontrib>Murugan, Anbazhagan</creatorcontrib><creatorcontrib>Siva, Vadivel</creatorcontrib><creatorcontrib>Palanisamy, Govindasamy</creatorcontrib><creatorcontrib>Kim, Ikhyun</creatorcontrib><creatorcontrib>Lee, Jintae</creatorcontrib><creatorcontrib>Paramasivam, Sivaprakash</creatorcontrib><title>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</title><title>Materials</title><description>Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.</description><subject>Capacitance</subject><subject>Carbon</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nickel</subject><subject>Photomicrographs</subject><subject>Polymers</subject><subject>Supercapacitors</subject><subject>Tin dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpd0VFLwzAQB_AiCo7pi58g4IsIdZemXZPHOZwT5iZsPpcsvbqOtqmXVNi3tzpB8eC4e_hxHPyD4IrDnRAKRrXmKUguVXwSDLhS45CrOD79s58Hl87toS8huIzUIPATNi_fduELUmGp1o1Btu5aJKNbbUpvid1rhzmzTQ-RNJldaXTFNli3lfYYzgiRLcvRullFbKkb6zx1xneEjn2Ums0POVm_w_54xZ7R72x-EZwVunJ4-TOHwevsYTOdh4vV49N0sgiNiKQPUYACboxUKKHvRCuZxwJNKlMTxUrIQo0l6HjLCw64LRKeRhIkRCIvTIJiGNwc77Zk3zt0PqtLZ7CqdIO2c5mAOFUJJGPV0-t_dG87avrvvhVAAlL06vaoDFnnCIuspbLWdMg4ZF8ZZL8ZiE_tTHh5</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Shameem, Abdul Samad</creator><creator>Murugan, Anbazhagan</creator><creator>Siva, Vadivel</creator><creator>Palanisamy, Govindasamy</creator><creator>Kim, Ikhyun</creator><creator>Lee, Jintae</creator><creator>Paramasivam, Sivaprakash</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1383-1682</orcidid><orcidid>https://orcid.org/0000-0002-2241-7910</orcidid><orcidid>https://orcid.org/0000-0003-4092-3873</orcidid><orcidid>https://orcid.org/0000-0002-5916-9244</orcidid><orcidid>https://orcid.org/0000-0001-8461-4795</orcidid><orcidid>https://orcid.org/0000-0002-7808-5265</orcidid></search><sort><creationdate>20240419</creationdate><title>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</title><author>Shameem, Abdul Samad ; Murugan, Anbazhagan ; Siva, Vadivel ; Palanisamy, Govindasamy ; Kim, Ikhyun ; Lee, Jintae ; Paramasivam, Sivaprakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e30901cc89e809e85a98d43ec787c24938f9680a4b1f10ebf5172808023dfc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Carbon</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nickel</topic><topic>Photomicrographs</topic><topic>Polymers</topic><topic>Supercapacitors</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shameem, Abdul Samad</creatorcontrib><creatorcontrib>Murugan, Anbazhagan</creatorcontrib><creatorcontrib>Siva, Vadivel</creatorcontrib><creatorcontrib>Palanisamy, Govindasamy</creatorcontrib><creatorcontrib>Kim, Ikhyun</creatorcontrib><creatorcontrib>Lee, Jintae</creatorcontrib><creatorcontrib>Paramasivam, Sivaprakash</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shameem, Abdul Samad</au><au>Murugan, Anbazhagan</au><au>Siva, Vadivel</au><au>Palanisamy, Govindasamy</au><au>Kim, Ikhyun</au><au>Lee, Jintae</au><au>Paramasivam, Sivaprakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method</atitle><jtitle>Materials</jtitle><date>2024-04-19</date><risdate>2024</risdate><volume>17</volume><issue>8</issue><spage>1894</spage><pages>1894-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17081894</doi><orcidid>https://orcid.org/0000-0003-1383-1682</orcidid><orcidid>https://orcid.org/0000-0002-2241-7910</orcidid><orcidid>https://orcid.org/0000-0003-4092-3873</orcidid><orcidid>https://orcid.org/0000-0002-5916-9244</orcidid><orcidid>https://orcid.org/0000-0001-8461-4795</orcidid><orcidid>https://orcid.org/0000-0002-7808-5265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-04, Vol.17 (8), p.1894
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3047950569
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Capacitance
Carbon
Doping
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Energy resources
Energy storage
Fourier transforms
Functional groups
Metal oxides
Morphology
Nanocomposites
Nanomaterials
Nickel
Photomicrographs
Polymers
Supercapacitors
Tin dioxide
title A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Performance%20Supercapacitor%20Based%20on%20Hierarchical%20Template-Free%20Ni/SnO2%20Nanostructures%20via%20Hydrothermal%20Method&rft.jtitle=Materials&rft.au=Shameem,%20Abdul%20Samad&rft.date=2024-04-19&rft.volume=17&rft.issue=8&rft.spage=1894&rft.pages=1894-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17081894&rft_dat=%3Cproquest_cross%3E3047005083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047005083&rft_id=info:pmid/&rfr_iscdi=true