The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies

nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO ). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-04, Vol.25 (8), p.4413
Hauptverfasser: Valiauga, Benjaminas, Bagdžiūnas, Gintautas, Sharrock, Abigail V, Ackerley, David F, Čėnas, Narimantas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 4413
container_title International journal of molecular sciences
container_volume 25
creator Valiauga, Benjaminas
Bagdžiūnas, Gintautas
Sharrock, Abigail V
Ackerley, David F
Čėnas, Narimantas
description nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO ). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO increases with their electron affinity (single-electron reduction potential, ) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on , but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.
doi_str_mv 10.3390/ijms25084413
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047949462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046908602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</originalsourceid><addsrcrecordid>eNpd0UtLxDAUBeAgiu-dawm4cWE1jzZt3A3jE3zB6LqkyY1maJsxSRfzP_zBdvCBuMpdfOcQOAgdUHLKuSRnbt5FVpAqzylfQ9s0ZywjRJTrf-4ttBPjnBDGWSE30RavRMmllNvo4_kN8FQl1S6ji_ge9JvqXeywt_jyFGvfOvzgUvABzKCTioAnJ1iNkd44oxJg6wO-hh6yCxdAJzD4KXgThlc8Vge1WJ7jJ5-gT853kILTeIzi2dDEFFb52QK0s067tMSzNBgHcQ9tWNVG2P9-d9HL1eXz9Ca7e7y-nU7uMs2LMmVWS1NBbmzeWGOlZIZZVla04ZTaqgJhqbVGNYIYaVhRFBwKXSgCRtFKaMF30fFX7yL49wFiqjsXNbSt6sEPseYkL2Uuc8FGevSPzv0Q-vF3KyUkqQRZqZMvpYOPMYCtF8F1KixrSurVWvXftUZ--F06NB2YX_wzD_8EMyKSOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046908602</pqid></control><display><type>article</type><title>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Valiauga, Benjaminas ; Bagdžiūnas, Gintautas ; Sharrock, Abigail V ; Ackerley, David F ; Čėnas, Narimantas</creator><creatorcontrib>Valiauga, Benjaminas ; Bagdžiūnas, Gintautas ; Sharrock, Abigail V ; Ackerley, David F ; Čėnas, Narimantas</creatorcontrib><description>nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO ). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO increases with their electron affinity (single-electron reduction potential, ) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on , but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25084413</identifier><identifier>PMID: 38673999</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cancer ; Catalysis ; E coli ; Enzymes ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Molecular Docking Simulation ; Nitroreductases - chemistry ; Nitroreductases - genetics ; Nitroreductases - metabolism ; Oxidation ; Oxidation-Reduction ; Potentiometry ; Prodrugs - chemistry ; Prodrugs - metabolism ; Substrate Specificity ; Table tennis</subject><ispartof>International journal of molecular sciences, 2024-04, Vol.25 (8), p.4413</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</citedby><cites>FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</cites><orcidid>0000-0003-2837-9481 ; 0000-0002-9924-6902 ; 0000-0002-6188-9902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38673999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valiauga, Benjaminas</creatorcontrib><creatorcontrib>Bagdžiūnas, Gintautas</creatorcontrib><creatorcontrib>Sharrock, Abigail V</creatorcontrib><creatorcontrib>Ackerley, David F</creatorcontrib><creatorcontrib>Čėnas, Narimantas</creatorcontrib><title>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO ). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO increases with their electron affinity (single-electron reduction potential, ) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on , but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.</description><subject>Cancer</subject><subject>Catalysis</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Molecular Docking Simulation</subject><subject>Nitroreductases - chemistry</subject><subject>Nitroreductases - genetics</subject><subject>Nitroreductases - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Potentiometry</subject><subject>Prodrugs - chemistry</subject><subject>Prodrugs - metabolism</subject><subject>Substrate Specificity</subject><subject>Table tennis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0UtLxDAUBeAgiu-dawm4cWE1jzZt3A3jE3zB6LqkyY1maJsxSRfzP_zBdvCBuMpdfOcQOAgdUHLKuSRnbt5FVpAqzylfQ9s0ZywjRJTrf-4ttBPjnBDGWSE30RavRMmllNvo4_kN8FQl1S6ji_ge9JvqXeywt_jyFGvfOvzgUvABzKCTioAnJ1iNkd44oxJg6wO-hh6yCxdAJzD4KXgThlc8Vge1WJ7jJ5-gT853kILTeIzi2dDEFFb52QK0s067tMSzNBgHcQ9tWNVG2P9-d9HL1eXz9Ca7e7y-nU7uMs2LMmVWS1NBbmzeWGOlZIZZVla04ZTaqgJhqbVGNYIYaVhRFBwKXSgCRtFKaMF30fFX7yL49wFiqjsXNbSt6sEPseYkL2Uuc8FGevSPzv0Q-vF3KyUkqQRZqZMvpYOPMYCtF8F1KixrSurVWvXftUZ--F06NB2YX_wzD_8EMyKSOg</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Valiauga, Benjaminas</creator><creator>Bagdžiūnas, Gintautas</creator><creator>Sharrock, Abigail V</creator><creator>Ackerley, David F</creator><creator>Čėnas, Narimantas</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2837-9481</orcidid><orcidid>https://orcid.org/0000-0002-9924-6902</orcidid><orcidid>https://orcid.org/0000-0002-6188-9902</orcidid></search><sort><creationdate>20240417</creationdate><title>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</title><author>Valiauga, Benjaminas ; Bagdžiūnas, Gintautas ; Sharrock, Abigail V ; Ackerley, David F ; Čėnas, Narimantas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer</topic><topic>Catalysis</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Molecular Docking Simulation</topic><topic>Nitroreductases - chemistry</topic><topic>Nitroreductases - genetics</topic><topic>Nitroreductases - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Potentiometry</topic><topic>Prodrugs - chemistry</topic><topic>Prodrugs - metabolism</topic><topic>Substrate Specificity</topic><topic>Table tennis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valiauga, Benjaminas</creatorcontrib><creatorcontrib>Bagdžiūnas, Gintautas</creatorcontrib><creatorcontrib>Sharrock, Abigail V</creatorcontrib><creatorcontrib>Ackerley, David F</creatorcontrib><creatorcontrib>Čėnas, Narimantas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valiauga, Benjaminas</au><au>Bagdžiūnas, Gintautas</au><au>Sharrock, Abigail V</au><au>Ackerley, David F</au><au>Čėnas, Narimantas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>4413</spage><pages>4413-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO ). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO increases with their electron affinity (single-electron reduction potential, ) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on , but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38673999</pmid><doi>10.3390/ijms25084413</doi><orcidid>https://orcid.org/0000-0003-2837-9481</orcidid><orcidid>https://orcid.org/0000-0002-9924-6902</orcidid><orcidid>https://orcid.org/0000-0002-6188-9902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2024-04, Vol.25 (8), p.4413
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_proquest_miscellaneous_3047949462
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Cancer
Catalysis
E coli
Enzymes
Escherichia coli - genetics
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Molecular Docking Simulation
Nitroreductases - chemistry
Nitroreductases - genetics
Nitroreductases - metabolism
Oxidation
Oxidation-Reduction
Potentiometry
Prodrugs - chemistry
Prodrugs - metabolism
Substrate Specificity
Table tennis
title The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Catalysis%20Mechanism%20of%20E.%20coli%20Nitroreductase%20A,%20a%20Candidate%20for%20Gene-Directed%20Prodrug%20Therapy:%20Potentiometric%20and%20Substrate%20Specificity%20Studies&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Valiauga,%20Benjaminas&rft.date=2024-04-17&rft.volume=25&rft.issue=8&rft.spage=4413&rft.pages=4413-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25084413&rft_dat=%3Cproquest_cross%3E3046908602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046908602&rft_id=info:pmid/38673999&rfr_iscdi=true