The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies
nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO ). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sen...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-04, Vol.25 (8), p.4413 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 4413 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Valiauga, Benjaminas Bagdžiūnas, Gintautas Sharrock, Abigail V Ackerley, David F Čėnas, Narimantas |
description | nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO
). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO
and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO
increases with their electron affinity (single-electron reduction potential,
) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on
, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO
reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents. |
doi_str_mv | 10.3390/ijms25084413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047949462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046908602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</originalsourceid><addsrcrecordid>eNpd0UtLxDAUBeAgiu-dawm4cWE1jzZt3A3jE3zB6LqkyY1maJsxSRfzP_zBdvCBuMpdfOcQOAgdUHLKuSRnbt5FVpAqzylfQ9s0ZywjRJTrf-4ttBPjnBDGWSE30RavRMmllNvo4_kN8FQl1S6ji_ge9JvqXeywt_jyFGvfOvzgUvABzKCTioAnJ1iNkd44oxJg6wO-hh6yCxdAJzD4KXgThlc8Vge1WJ7jJ5-gT853kILTeIzi2dDEFFb52QK0s067tMSzNBgHcQ9tWNVG2P9-d9HL1eXz9Ca7e7y-nU7uMs2LMmVWS1NBbmzeWGOlZIZZVla04ZTaqgJhqbVGNYIYaVhRFBwKXSgCRtFKaMF30fFX7yL49wFiqjsXNbSt6sEPseYkL2Uuc8FGevSPzv0Q-vF3KyUkqQRZqZMvpYOPMYCtF8F1KixrSurVWvXftUZ--F06NB2YX_wzD_8EMyKSOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046908602</pqid></control><display><type>article</type><title>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Valiauga, Benjaminas ; Bagdžiūnas, Gintautas ; Sharrock, Abigail V ; Ackerley, David F ; Čėnas, Narimantas</creator><creatorcontrib>Valiauga, Benjaminas ; Bagdžiūnas, Gintautas ; Sharrock, Abigail V ; Ackerley, David F ; Čėnas, Narimantas</creatorcontrib><description>nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO
). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO
and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO
increases with their electron affinity (single-electron reduction potential,
) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on
, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO
reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25084413</identifier><identifier>PMID: 38673999</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cancer ; Catalysis ; E coli ; Enzymes ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Molecular Docking Simulation ; Nitroreductases - chemistry ; Nitroreductases - genetics ; Nitroreductases - metabolism ; Oxidation ; Oxidation-Reduction ; Potentiometry ; Prodrugs - chemistry ; Prodrugs - metabolism ; Substrate Specificity ; Table tennis</subject><ispartof>International journal of molecular sciences, 2024-04, Vol.25 (8), p.4413</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</citedby><cites>FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</cites><orcidid>0000-0003-2837-9481 ; 0000-0002-9924-6902 ; 0000-0002-6188-9902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38673999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valiauga, Benjaminas</creatorcontrib><creatorcontrib>Bagdžiūnas, Gintautas</creatorcontrib><creatorcontrib>Sharrock, Abigail V</creatorcontrib><creatorcontrib>Ackerley, David F</creatorcontrib><creatorcontrib>Čėnas, Narimantas</creatorcontrib><title>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO
). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO
and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO
increases with their electron affinity (single-electron reduction potential,
) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on
, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO
reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.</description><subject>Cancer</subject><subject>Catalysis</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Molecular Docking Simulation</subject><subject>Nitroreductases - chemistry</subject><subject>Nitroreductases - genetics</subject><subject>Nitroreductases - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Potentiometry</subject><subject>Prodrugs - chemistry</subject><subject>Prodrugs - metabolism</subject><subject>Substrate Specificity</subject><subject>Table tennis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0UtLxDAUBeAgiu-dawm4cWE1jzZt3A3jE3zB6LqkyY1maJsxSRfzP_zBdvCBuMpdfOcQOAgdUHLKuSRnbt5FVpAqzylfQ9s0ZywjRJTrf-4ttBPjnBDGWSE30RavRMmllNvo4_kN8FQl1S6ji_ge9JvqXeywt_jyFGvfOvzgUvABzKCTioAnJ1iNkd44oxJg6wO-hh6yCxdAJzD4KXgThlc8Vge1WJ7jJ5-gT853kILTeIzi2dDEFFb52QK0s067tMSzNBgHcQ9tWNVG2P9-d9HL1eXz9Ca7e7y-nU7uMs2LMmVWS1NBbmzeWGOlZIZZVla04ZTaqgJhqbVGNYIYaVhRFBwKXSgCRtFKaMF30fFX7yL49wFiqjsXNbSt6sEPseYkL2Uuc8FGevSPzv0Q-vF3KyUkqQRZqZMvpYOPMYCtF8F1KixrSurVWvXftUZ--F06NB2YX_wzD_8EMyKSOg</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Valiauga, Benjaminas</creator><creator>Bagdžiūnas, Gintautas</creator><creator>Sharrock, Abigail V</creator><creator>Ackerley, David F</creator><creator>Čėnas, Narimantas</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2837-9481</orcidid><orcidid>https://orcid.org/0000-0002-9924-6902</orcidid><orcidid>https://orcid.org/0000-0002-6188-9902</orcidid></search><sort><creationdate>20240417</creationdate><title>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</title><author>Valiauga, Benjaminas ; Bagdžiūnas, Gintautas ; Sharrock, Abigail V ; Ackerley, David F ; Čėnas, Narimantas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-fc9d8e4df4bfdf992d2f2781b311f88e6f1ffdab60d9d25553e5c5a0eda186c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer</topic><topic>Catalysis</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Molecular Docking Simulation</topic><topic>Nitroreductases - chemistry</topic><topic>Nitroreductases - genetics</topic><topic>Nitroreductases - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Potentiometry</topic><topic>Prodrugs - chemistry</topic><topic>Prodrugs - metabolism</topic><topic>Substrate Specificity</topic><topic>Table tennis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valiauga, Benjaminas</creatorcontrib><creatorcontrib>Bagdžiūnas, Gintautas</creatorcontrib><creatorcontrib>Sharrock, Abigail V</creatorcontrib><creatorcontrib>Ackerley, David F</creatorcontrib><creatorcontrib>Čėnas, Narimantas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valiauga, Benjaminas</au><au>Bagdžiūnas, Gintautas</au><au>Sharrock, Abigail V</au><au>Ackerley, David F</au><au>Čėnas, Narimantas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>4413</spage><pages>4413-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO
). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO
and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO
increases with their electron affinity (single-electron reduction potential,
) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on
, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO
reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38673999</pmid><doi>10.3390/ijms25084413</doi><orcidid>https://orcid.org/0000-0003-2837-9481</orcidid><orcidid>https://orcid.org/0000-0002-9924-6902</orcidid><orcidid>https://orcid.org/0000-0002-6188-9902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-04, Vol.25 (8), p.4413 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_proquest_miscellaneous_3047949462 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Cancer Catalysis E coli Enzymes Escherichia coli - genetics Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Molecular Docking Simulation Nitroreductases - chemistry Nitroreductases - genetics Nitroreductases - metabolism Oxidation Oxidation-Reduction Potentiometry Prodrugs - chemistry Prodrugs - metabolism Substrate Specificity Table tennis |
title | The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Catalysis%20Mechanism%20of%20E.%20coli%20Nitroreductase%20A,%20a%20Candidate%20for%20Gene-Directed%20Prodrug%20Therapy:%20Potentiometric%20and%20Substrate%20Specificity%20Studies&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Valiauga,%20Benjaminas&rft.date=2024-04-17&rft.volume=25&rft.issue=8&rft.spage=4413&rft.pages=4413-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25084413&rft_dat=%3Cproquest_cross%3E3046908602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046908602&rft_id=info:pmid/38673999&rfr_iscdi=true |