RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma

Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2024-06, Vol.134 (11), p.1-17
Hauptverfasser: Song, Xiao, Tiek, Deanna, Miki, Shunichiro, Huang, Tianzhi, Lu, Minghui, Goenka, Anshika, Iglesia, Rebeca, Yu, Xiaozhou, Wu, Runxin, Walker, Maya, Zeng, Chang, Shah, Hardik, Weng, Shao Huan Samuel, Huff, Allen, Zhang, Wei, Koga, Tomoyuki, Hubert, Christopher, Horbinski, Craig M, Furnari, Frank B, Hu, Bo, Cheng, Shi-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 11
container_start_page 1
container_title The Journal of clinical investigation
container_volume 134
creator Song, Xiao
Tiek, Deanna
Miki, Shunichiro
Huang, Tianzhi
Lu, Minghui
Goenka, Anshika
Iglesia, Rebeca
Yu, Xiaozhou
Wu, Runxin
Walker, Maya
Zeng, Chang
Shah, Hardik
Weng, Shao Huan Samuel
Huff, Allen
Zhang, Wei
Koga, Tomoyuki
Hubert, Christopher
Horbinski, Craig M
Furnari, Frank B
Hu, Bo
Cheng, Shi-Yuan
description Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.
doi_str_mv 10.1172/JCI173789
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047945367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797807811</galeid><sourcerecordid>A797807811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-f940d4ec9c42a5aa7be536845b704fd50cc8ad5b959e66d098746d83a3cecb8d3</originalsourceid><addsrcrecordid>eNqN0s1u1DAQAOAIgWgpHHgBZAkJlUOKndixfVytKCyqqFR-rpFjT7KunDi1HUTfHq8opYv2gHyYkf15DjNTFC8JPiOEV-8-rTeE11zIR8UxYUyUoqrF4wf5UfEsxmuMCaWMPi2OatE0VU6PC3v1eYXi7Ky204DUpNxttBEZ0HbeQthlP8D5eYQpKYe2FoIKOoeYsUEhvyoXUcpWzbAkq1FSYYAUkZ2QMotLaHDWj-p58aTPFF7cxZPi2_n7r-uP5cXlh816dVFqRqpU9pJiQ0FLTSvFlOIdsLoRlHUc094wrLVQhnWSSWgag6XgtDGiVrUG3QlTnxSnv-vOwd8sEFM72qjBOTWBX2JbY8olzTV5pq__odd-CbkHO9VwKogUzV81KAetnXqfgtK7ou2KSy4wF4RkVR5QA0y5Mc5P0Nt8vefPDvh8DIxWH_zwdu9DNgl-pkEtMbabL1f_by-_79s3D-w2jzNto3d5lH6KB4vq4GMM0LdzsKMKty3B7W4P2_s9zPbVXWeXbgRzL_8sXv0LrUHUXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067481986</pqid></control><display><type>article</type><title>RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Song, Xiao ; Tiek, Deanna ; Miki, Shunichiro ; Huang, Tianzhi ; Lu, Minghui ; Goenka, Anshika ; Iglesia, Rebeca ; Yu, Xiaozhou ; Wu, Runxin ; Walker, Maya ; Zeng, Chang ; Shah, Hardik ; Weng, Shao Huan Samuel ; Huff, Allen ; Zhang, Wei ; Koga, Tomoyuki ; Hubert, Christopher ; Horbinski, Craig M ; Furnari, Frank B ; Hu, Bo ; Cheng, Shi-Yuan</creator><creatorcontrib>Song, Xiao ; Tiek, Deanna ; Miki, Shunichiro ; Huang, Tianzhi ; Lu, Minghui ; Goenka, Anshika ; Iglesia, Rebeca ; Yu, Xiaozhou ; Wu, Runxin ; Walker, Maya ; Zeng, Chang ; Shah, Hardik ; Weng, Shao Huan Samuel ; Huff, Allen ; Zhang, Wei ; Koga, Tomoyuki ; Hubert, Christopher ; Horbinski, Craig M ; Furnari, Frank B ; Hu, Bo ; Cheng, Shi-Yuan</creatorcontrib><description>Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI173789</identifier><identifier>PMID: 38662454</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adult ; Alternative Splicing ; Analysis ; Animals ; Brain cancer ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Brain Neoplasms - therapy ; Cell Line, Tumor ; Datasets ; Development and progression ; Genetic aspects ; Glioma ; Glioma - genetics ; Glioma - metabolism ; Glioma - pathology ; Glioma - therapy ; Glioma cells ; Gliomas ; Heterogeneous-Nuclear Ribonucleoproteins - genetics ; Heterogeneous-Nuclear Ribonucleoproteins - metabolism ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Lipid metabolism ; Malignancy ; Medical prognosis ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mutation ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Nervous system ; Neurons ; Neurophysiology ; Physiological aspects ; Polypyrimidine Tract-Binding Protein - genetics ; Polypyrimidine Tract-Binding Protein - metabolism ; Protein binding ; Proteins ; Ribonucleic acid ; Risk factors ; RNA ; RNA sequencing ; RNA splicing ; RNA-binding protein ; Stem cells ; Therapeutic targets ; Tumors</subject><ispartof>The Journal of clinical investigation, 2024-06, Vol.134 (11), p.1-17</ispartof><rights>COPYRIGHT 2024 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jun 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c512t-f940d4ec9c42a5aa7be536845b704fd50cc8ad5b959e66d098746d83a3cecb8d3</cites><orcidid>0000-0001-8408-5686 ; 0000-0001-8340-9992 ; 0000-0003-0875-263X ; 0000-0002-2881-7691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38662454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Xiao</creatorcontrib><creatorcontrib>Tiek, Deanna</creatorcontrib><creatorcontrib>Miki, Shunichiro</creatorcontrib><creatorcontrib>Huang, Tianzhi</creatorcontrib><creatorcontrib>Lu, Minghui</creatorcontrib><creatorcontrib>Goenka, Anshika</creatorcontrib><creatorcontrib>Iglesia, Rebeca</creatorcontrib><creatorcontrib>Yu, Xiaozhou</creatorcontrib><creatorcontrib>Wu, Runxin</creatorcontrib><creatorcontrib>Walker, Maya</creatorcontrib><creatorcontrib>Zeng, Chang</creatorcontrib><creatorcontrib>Shah, Hardik</creatorcontrib><creatorcontrib>Weng, Shao Huan Samuel</creatorcontrib><creatorcontrib>Huff, Allen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Koga, Tomoyuki</creatorcontrib><creatorcontrib>Hubert, Christopher</creatorcontrib><creatorcontrib>Horbinski, Craig M</creatorcontrib><creatorcontrib>Furnari, Frank B</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><creatorcontrib>Cheng, Shi-Yuan</creatorcontrib><title>RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.</description><subject>Adult</subject><subject>Alternative Splicing</subject><subject>Analysis</subject><subject>Animals</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - therapy</subject><subject>Cell Line, Tumor</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Genetic aspects</subject><subject>Glioma</subject><subject>Glioma - genetics</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glioma - therapy</subject><subject>Glioma cells</subject><subject>Gliomas</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - genetics</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Lipid metabolism</subject><subject>Malignancy</subject><subject>Medical prognosis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Physiological aspects</subject><subject>Polypyrimidine Tract-Binding Protein - genetics</subject><subject>Polypyrimidine Tract-Binding Protein - metabolism</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>Risk factors</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA splicing</subject><subject>RNA-binding protein</subject><subject>Stem cells</subject><subject>Therapeutic targets</subject><subject>Tumors</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0s1u1DAQAOAIgWgpHHgBZAkJlUOKndixfVytKCyqqFR-rpFjT7KunDi1HUTfHq8opYv2gHyYkf15DjNTFC8JPiOEV-8-rTeE11zIR8UxYUyUoqrF4wf5UfEsxmuMCaWMPi2OatE0VU6PC3v1eYXi7Ky204DUpNxttBEZ0HbeQthlP8D5eYQpKYe2FoIKOoeYsUEhvyoXUcpWzbAkq1FSYYAUkZ2QMotLaHDWj-p58aTPFF7cxZPi2_n7r-uP5cXlh816dVFqRqpU9pJiQ0FLTSvFlOIdsLoRlHUc094wrLVQhnWSSWgag6XgtDGiVrUG3QlTnxSnv-vOwd8sEFM72qjBOTWBX2JbY8olzTV5pq__odd-CbkHO9VwKogUzV81KAetnXqfgtK7ou2KSy4wF4RkVR5QA0y5Mc5P0Nt8vefPDvh8DIxWH_zwdu9DNgl-pkEtMbabL1f_by-_79s3D-w2jzNto3d5lH6KB4vq4GMM0LdzsKMKty3B7W4P2_s9zPbVXWeXbgRzL_8sXv0LrUHUXQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Song, Xiao</creator><creator>Tiek, Deanna</creator><creator>Miki, Shunichiro</creator><creator>Huang, Tianzhi</creator><creator>Lu, Minghui</creator><creator>Goenka, Anshika</creator><creator>Iglesia, Rebeca</creator><creator>Yu, Xiaozhou</creator><creator>Wu, Runxin</creator><creator>Walker, Maya</creator><creator>Zeng, Chang</creator><creator>Shah, Hardik</creator><creator>Weng, Shao Huan Samuel</creator><creator>Huff, Allen</creator><creator>Zhang, Wei</creator><creator>Koga, Tomoyuki</creator><creator>Hubert, Christopher</creator><creator>Horbinski, Craig M</creator><creator>Furnari, Frank B</creator><creator>Hu, Bo</creator><creator>Cheng, Shi-Yuan</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8408-5686</orcidid><orcidid>https://orcid.org/0000-0001-8340-9992</orcidid><orcidid>https://orcid.org/0000-0003-0875-263X</orcidid><orcidid>https://orcid.org/0000-0002-2881-7691</orcidid></search><sort><creationdate>20240601</creationdate><title>RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma</title><author>Song, Xiao ; Tiek, Deanna ; Miki, Shunichiro ; Huang, Tianzhi ; Lu, Minghui ; Goenka, Anshika ; Iglesia, Rebeca ; Yu, Xiaozhou ; Wu, Runxin ; Walker, Maya ; Zeng, Chang ; Shah, Hardik ; Weng, Shao Huan Samuel ; Huff, Allen ; Zhang, Wei ; Koga, Tomoyuki ; Hubert, Christopher ; Horbinski, Craig M ; Furnari, Frank B ; Hu, Bo ; Cheng, Shi-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-f940d4ec9c42a5aa7be536845b704fd50cc8ad5b959e66d098746d83a3cecb8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Alternative Splicing</topic><topic>Analysis</topic><topic>Animals</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - therapy</topic><topic>Cell Line, Tumor</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Genetic aspects</topic><topic>Glioma</topic><topic>Glioma - genetics</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glioma - therapy</topic><topic>Glioma cells</topic><topic>Gliomas</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - genetics</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - metabolism</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Lipid metabolism</topic><topic>Malignancy</topic><topic>Medical prognosis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Physiological aspects</topic><topic>Polypyrimidine Tract-Binding Protein - genetics</topic><topic>Polypyrimidine Tract-Binding Protein - metabolism</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>Risk factors</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA splicing</topic><topic>RNA-binding protein</topic><topic>Stem cells</topic><topic>Therapeutic targets</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xiao</creatorcontrib><creatorcontrib>Tiek, Deanna</creatorcontrib><creatorcontrib>Miki, Shunichiro</creatorcontrib><creatorcontrib>Huang, Tianzhi</creatorcontrib><creatorcontrib>Lu, Minghui</creatorcontrib><creatorcontrib>Goenka, Anshika</creatorcontrib><creatorcontrib>Iglesia, Rebeca</creatorcontrib><creatorcontrib>Yu, Xiaozhou</creatorcontrib><creatorcontrib>Wu, Runxin</creatorcontrib><creatorcontrib>Walker, Maya</creatorcontrib><creatorcontrib>Zeng, Chang</creatorcontrib><creatorcontrib>Shah, Hardik</creatorcontrib><creatorcontrib>Weng, Shao Huan Samuel</creatorcontrib><creatorcontrib>Huff, Allen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Koga, Tomoyuki</creatorcontrib><creatorcontrib>Hubert, Christopher</creatorcontrib><creatorcontrib>Horbinski, Craig M</creatorcontrib><creatorcontrib>Furnari, Frank B</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><creatorcontrib>Cheng, Shi-Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xiao</au><au>Tiek, Deanna</au><au>Miki, Shunichiro</au><au>Huang, Tianzhi</au><au>Lu, Minghui</au><au>Goenka, Anshika</au><au>Iglesia, Rebeca</au><au>Yu, Xiaozhou</au><au>Wu, Runxin</au><au>Walker, Maya</au><au>Zeng, Chang</au><au>Shah, Hardik</au><au>Weng, Shao Huan Samuel</au><au>Huff, Allen</au><au>Zhang, Wei</au><au>Koga, Tomoyuki</au><au>Hubert, Christopher</au><au>Horbinski, Craig M</au><au>Furnari, Frank B</au><au>Hu, Bo</au><au>Cheng, Shi-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>134</volume><issue>11</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>38662454</pmid><doi>10.1172/JCI173789</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8408-5686</orcidid><orcidid>https://orcid.org/0000-0001-8340-9992</orcidid><orcidid>https://orcid.org/0000-0003-0875-263X</orcidid><orcidid>https://orcid.org/0000-0002-2881-7691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8238
ispartof The Journal of clinical investigation, 2024-06, Vol.134 (11), p.1-17
issn 1558-8238
0021-9738
1558-8238
language eng
recordid cdi_proquest_miscellaneous_3047945367
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
Alternative Splicing
Analysis
Animals
Brain cancer
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Brain Neoplasms - therapy
Cell Line, Tumor
Datasets
Development and progression
Genetic aspects
Glioma
Glioma - genetics
Glioma - metabolism
Glioma - pathology
Glioma - therapy
Glioma cells
Gliomas
Heterogeneous-Nuclear Ribonucleoproteins - genetics
Heterogeneous-Nuclear Ribonucleoproteins - metabolism
Humans
Induced Pluripotent Stem Cells - metabolism
Lipid metabolism
Malignancy
Medical prognosis
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mutation
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Nervous system
Neurons
Neurophysiology
Physiological aspects
Polypyrimidine Tract-Binding Protein - genetics
Polypyrimidine Tract-Binding Protein - metabolism
Protein binding
Proteins
Ribonucleic acid
Risk factors
RNA
RNA sequencing
RNA splicing
RNA-binding protein
Stem cells
Therapeutic targets
Tumors
title RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20splicing%20analysis%20deciphers%20developmental%20hierarchies%20and%20reveals%20therapeutic%20targets%20in%20adult%20glioma&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Song,%20Xiao&rft.date=2024-06-01&rft.volume=134&rft.issue=11&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI173789&rft_dat=%3Cgale_proqu%3EA797807811%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067481986&rft_id=info:pmid/38662454&rft_galeid=A797807811&rfr_iscdi=true