Dual‐Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries

Alkaline zinc‐based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual‐function electrolyte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-07, Vol.36 (28), p.e2404834-n/a
Hauptverfasser: Ling, Rene, Zhu, Zixuan, Peng, Kang, Fang, Junkai, Zou, Wenhao, Li, Qixuan, Liu, Yulin, Zhu, Qinshan, Lin, Ning, Xu, Tongwen, Yang, Zhengjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page e2404834
container_title Advanced materials (Weinheim)
container_volume 36
creator Ling, Rene
Zhu, Zixuan
Peng, Kang
Fang, Junkai
Zou, Wenhao
Li, Qixuan
Liu, Yulin
Zhu, Qinshan
Lin, Ning
Xu, Tongwen
Yang, Zhengjin
description Alkaline zinc‐based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual‐function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH− group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc‐iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs. This article demonstrates a dual‐function additive strategy aimed at addressing the capacity loss in alkaline aqueous zinc‐based flow batteries (AZFBs) during long‐duration operations in real‐world applications. This dual‐function additive promotes uniform zinc deposition, slows down corrosion in alkaline environments, and inhibits the formation of dead zinc, thereby enhancing the capacity retention of AZFBs and significantly extending their battery cycling lifespan.
doi_str_mv 10.1002/adma.202404834
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047943796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047943796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-a6424eb9efe6f525ec609b3c150c02cf7b08d0650339834d2eb46abda9da9afd3</originalsourceid><addsrcrecordid>eNqFkL9u2zAQh4mgRez8WTMWBLpkkXsiKUoc3dhOArjIknToIlDUKWBKiwkpxfCWR8gz9kkqw4kDdClwwA333Q93HyFnKUxSAPZN1ys9YcAEiIKLAzJOM5YmAlT2iYxB8SxRUhQjchTjAwAoCfKQjHgh84IDG5Ofs167Py-vi741nfUtnTs0XfBu0yGd1rXt7DPSGUZ739LGB7r07T1d2maYut_a2RbpL9saunB-Tb_rrsNgMZ6Qz412EU_f-jG5W8xvL66S5c3l9cV0mRjOCpFoKZjASmGDsslYhkaCqrhJMzDATJNXUNQgM-BcDe_VDCshdVVrNZRuan5Mzne5j8E_9Ri7cmWjQed0i76PJQeRK8FzJQf06z_og-9DO1w3UHmRKw7ZlprsKBN8jAGb8jHYlQ6bMoVya7zcGi_3xoeFL2-xfbXCeo-_Kx4AtQPW1uHmP3HldPZj-hH-F4VmjSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078793056</pqid></control><display><type>article</type><title>Dual‐Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries</title><source>Wiley-Blackwell Journals</source><creator>Ling, Rene ; Zhu, Zixuan ; Peng, Kang ; Fang, Junkai ; Zou, Wenhao ; Li, Qixuan ; Liu, Yulin ; Zhu, Qinshan ; Lin, Ning ; Xu, Tongwen ; Yang, Zhengjin</creator><creatorcontrib>Ling, Rene ; Zhu, Zixuan ; Peng, Kang ; Fang, Junkai ; Zou, Wenhao ; Li, Qixuan ; Liu, Yulin ; Zhu, Qinshan ; Lin, Ning ; Xu, Tongwen ; Yang, Zhengjin</creatorcontrib><description>Alkaline zinc‐based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual‐function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH− group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc‐iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs. This article demonstrates a dual‐function additive strategy aimed at addressing the capacity loss in alkaline aqueous zinc‐based flow batteries (AZFBs) during long‐duration operations in real‐world applications. This dual‐function additive promotes uniform zinc deposition, slows down corrosion in alkaline environments, and inhibits the formation of dead zinc, thereby enhancing the capacity retention of AZFBs and significantly extending their battery cycling lifespan.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202404834</identifier><identifier>PMID: 38678302</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; alkaline zinc‐iron flow battery ; dead zinc ; Deposition ; electrolyte additive ; Electrolytes ; Energy storage ; Kinetics ; Metal hydroxides ; Nucleation ; Rechargeable batteries ; Ureas ; Zinc ; zinc dendrite</subject><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (28), p.e2404834-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3284-a6424eb9efe6f525ec609b3c150c02cf7b08d0650339834d2eb46abda9da9afd3</cites><orcidid>0000-0002-0722-7908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202404834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202404834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38678302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Rene</creatorcontrib><creatorcontrib>Zhu, Zixuan</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Fang, Junkai</creatorcontrib><creatorcontrib>Zou, Wenhao</creatorcontrib><creatorcontrib>Li, Qixuan</creatorcontrib><creatorcontrib>Liu, Yulin</creatorcontrib><creatorcontrib>Zhu, Qinshan</creatorcontrib><creatorcontrib>Lin, Ning</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><creatorcontrib>Yang, Zhengjin</creatorcontrib><title>Dual‐Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Alkaline zinc‐based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual‐function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH− group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc‐iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs. This article demonstrates a dual‐function additive strategy aimed at addressing the capacity loss in alkaline aqueous zinc‐based flow batteries (AZFBs) during long‐duration operations in real‐world applications. This dual‐function additive promotes uniform zinc deposition, slows down corrosion in alkaline environments, and inhibits the formation of dead zinc, thereby enhancing the capacity retention of AZFBs and significantly extending their battery cycling lifespan.</description><subject>Adsorption</subject><subject>alkaline zinc‐iron flow battery</subject><subject>dead zinc</subject><subject>Deposition</subject><subject>electrolyte additive</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Kinetics</subject><subject>Metal hydroxides</subject><subject>Nucleation</subject><subject>Rechargeable batteries</subject><subject>Ureas</subject><subject>Zinc</subject><subject>zinc dendrite</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL9u2zAQh4mgRez8WTMWBLpkkXsiKUoc3dhOArjIknToIlDUKWBKiwkpxfCWR8gz9kkqw4kDdClwwA333Q93HyFnKUxSAPZN1ys9YcAEiIKLAzJOM5YmAlT2iYxB8SxRUhQjchTjAwAoCfKQjHgh84IDG5Ofs167Py-vi741nfUtnTs0XfBu0yGd1rXt7DPSGUZ739LGB7r07T1d2maYut_a2RbpL9saunB-Tb_rrsNgMZ6Qz412EU_f-jG5W8xvL66S5c3l9cV0mRjOCpFoKZjASmGDsslYhkaCqrhJMzDATJNXUNQgM-BcDe_VDCshdVVrNZRuan5Mzne5j8E_9Ri7cmWjQed0i76PJQeRK8FzJQf06z_og-9DO1w3UHmRKw7ZlprsKBN8jAGb8jHYlQ6bMoVya7zcGi_3xoeFL2-xfbXCeo-_Kx4AtQPW1uHmP3HldPZj-hH-F4VmjSg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ling, Rene</creator><creator>Zhu, Zixuan</creator><creator>Peng, Kang</creator><creator>Fang, Junkai</creator><creator>Zou, Wenhao</creator><creator>Li, Qixuan</creator><creator>Liu, Yulin</creator><creator>Zhu, Qinshan</creator><creator>Lin, Ning</creator><creator>Xu, Tongwen</creator><creator>Yang, Zhengjin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0722-7908</orcidid></search><sort><creationdate>20240701</creationdate><title>Dual‐Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries</title><author>Ling, Rene ; Zhu, Zixuan ; Peng, Kang ; Fang, Junkai ; Zou, Wenhao ; Li, Qixuan ; Liu, Yulin ; Zhu, Qinshan ; Lin, Ning ; Xu, Tongwen ; Yang, Zhengjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-a6424eb9efe6f525ec609b3c150c02cf7b08d0650339834d2eb46abda9da9afd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>alkaline zinc‐iron flow battery</topic><topic>dead zinc</topic><topic>Deposition</topic><topic>electrolyte additive</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Kinetics</topic><topic>Metal hydroxides</topic><topic>Nucleation</topic><topic>Rechargeable batteries</topic><topic>Ureas</topic><topic>Zinc</topic><topic>zinc dendrite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Rene</creatorcontrib><creatorcontrib>Zhu, Zixuan</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Fang, Junkai</creatorcontrib><creatorcontrib>Zou, Wenhao</creatorcontrib><creatorcontrib>Li, Qixuan</creatorcontrib><creatorcontrib>Liu, Yulin</creatorcontrib><creatorcontrib>Zhu, Qinshan</creatorcontrib><creatorcontrib>Lin, Ning</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><creatorcontrib>Yang, Zhengjin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Rene</au><au>Zhu, Zixuan</au><au>Peng, Kang</au><au>Fang, Junkai</au><au>Zou, Wenhao</au><au>Li, Qixuan</au><au>Liu, Yulin</au><au>Zhu, Qinshan</au><au>Lin, Ning</au><au>Xu, Tongwen</au><au>Yang, Zhengjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual‐Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>28</issue><spage>e2404834</spage><epage>n/a</epage><pages>e2404834-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Alkaline zinc‐based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual‐function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH− group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc‐iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs. This article demonstrates a dual‐function additive strategy aimed at addressing the capacity loss in alkaline aqueous zinc‐based flow batteries (AZFBs) during long‐duration operations in real‐world applications. This dual‐function additive promotes uniform zinc deposition, slows down corrosion in alkaline environments, and inhibits the formation of dead zinc, thereby enhancing the capacity retention of AZFBs and significantly extending their battery cycling lifespan.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38678302</pmid><doi>10.1002/adma.202404834</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0722-7908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (28), p.e2404834-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3047943796
source Wiley-Blackwell Journals
subjects Adsorption
alkaline zinc‐iron flow battery
dead zinc
Deposition
electrolyte additive
Electrolytes
Energy storage
Kinetics
Metal hydroxides
Nucleation
Rechargeable batteries
Ureas
Zinc
zinc dendrite
title Dual‐Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%E2%80%90Function%20Electrolyte%20Additive%20Design%20for%20Long%20Life%20Alkaline%20Zinc%20Flow%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ling,%20Rene&rft.date=2024-07-01&rft.volume=36&rft.issue=28&rft.spage=e2404834&rft.epage=n/a&rft.pages=e2404834-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202404834&rft_dat=%3Cproquest_cross%3E3047943796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078793056&rft_id=info:pmid/38678302&rfr_iscdi=true