Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities
Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succe...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2024-05, Vol.31 (23), p.33347-33359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33359 |
---|---|
container_issue | 23 |
container_start_page | 33347 |
container_title | Environmental science and pollution research international |
container_volume | 31 |
creator | Xiang, FangMing Han, LuYing Jiang, ShuoYun Xu, XinHua Zhang, ZhiJian |
description | Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO
2
, CH
4
, and N
2
O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of
Methanophaga
,
Marinobacter
, and
Campylobacter
during the bioprocess, enhancing the consumption of CH
4
and N
2
O. The metagenomic data showed that the intervention of larvae reduced the ratio of (
nirK
+
nirS
+
nor
)/
nosZ
in the residues, thereby reducing the emission of N
2
O. Larvae also increased the functional gene abundance of
nirA
,
nirB
,
nirD
, and
nrfA
in the residues, making nitrite more inclined to be reduced to ammonia instead of N
2
O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading. |
doi_str_mv | 10.1007/s11356-024-33308-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047942962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047942962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2748-711d974cd060b515e690be1a8b6cdbf2fb828c0f9951887a2c9f35f208e8161a3</originalsourceid><addsrcrecordid>eNqFkbmO1jAUhSMEYhZ4AQpkiYYm4CXeShjBgDQSDdSR7VwHD3Y82AnofyGeE_9kWEQBla_l7xzr3NN1jwh-RjCWzyshjIse06FnjGHVqzvdKRFk6OWg9d0_5pPurNZrjCnWVN7vTpgSUijBTrtvL6Nxn1DNcQpQkI8HFE35YgClsIbZrIDmArB8zFtto6kIUqg15KUiX3JCU05Q1-CQDXmCuZjJ2Ajoq6lNag-ogDu4GJYZOVNsXpBZJrSEteQZ9ksjmttaNrcesRRcyTaYiFxOaWtogPqgu-dNrPDw9jzvPrx-9f7iTX_17vLtxYur3lE5qF4SMmk5uAkLbDnhIDS2QIyywk3WU28VVQ57rTlRShrqtGfcU6xAtWUZdt493X1vSv68tWBjS-sgRrNA28DICGdCMI7Z_1E8SD1QLWhDn_yFXuetLC1IowThXAqqGkV3quWvtYAfb0pIphxGgsdj4eNe-NgKH38UPh5Fj2-tN5tg-iX52XAD2A7U9rTMUH7__Q_b7-eEuV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061557628</pqid></control><display><type>article</type><title>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</title><source>Springer Nature - Complete Springer Journals</source><creator>Xiang, FangMing ; Han, LuYing ; Jiang, ShuoYun ; Xu, XinHua ; Zhang, ZhiJian</creator><creatorcontrib>Xiang, FangMing ; Han, LuYing ; Jiang, ShuoYun ; Xu, XinHua ; Zhang, ZhiJian</creatorcontrib><description>Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO
2
, CH
4
, and N
2
O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of
Methanophaga
,
Marinobacter
, and
Campylobacter
during the bioprocess, enhancing the consumption of CH
4
and N
2
O. The metagenomic data showed that the intervention of larvae reduced the ratio of (
nirK
+
nirS
+
nor
)/
nosZ
in the residues, thereby reducing the emission of N
2
O. Larvae also increased the functional gene abundance of
nirA
,
nirB
,
nirD
, and
nrfA
in the residues, making nitrite more inclined to be reduced to ammonia instead of N
2
O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-33308-8</identifier><identifier>PMID: 38676863</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abundance ; Aeration ; Ammonia ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioconversion ; biodegradability ; Biodegradable wastes ; Biodegradation ; biomass ; bioprocessing ; Bioreactors ; biotransformation ; Campylobacter ; Carbon ; Carbon dioxide ; Community structure ; Composting ; Earth and Environmental Science ; Ecotoxicology ; Emissions ; Emissions control ; Emissions trading ; Environment ; Environmental Chemistry ; Environmental Health ; genes ; Greenhouse gases ; greenhouses ; Hermetia illucens ; Household wastes ; Larvae ; Marinobacter ; Metagenomics ; Methane ; Microbial activity ; microbial communities ; microbiome ; Microbiomes ; Microorganisms ; nitrites ; Nitrogen ; Nitrous oxide ; Organic wastes ; Relative abundance ; Research Article ; Residues ; rRNA 16S ; Sequence analysis ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2024-05, Vol.31 (23), p.33347-33359</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2748-711d974cd060b515e690be1a8b6cdbf2fb828c0f9951887a2c9f35f208e8161a3</cites><orcidid>0000-0002-4133-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-33308-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-33308-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38676863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, FangMing</creatorcontrib><creatorcontrib>Han, LuYing</creatorcontrib><creatorcontrib>Jiang, ShuoYun</creatorcontrib><creatorcontrib>Xu, XinHua</creatorcontrib><creatorcontrib>Zhang, ZhiJian</creatorcontrib><title>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO
2
, CH
4
, and N
2
O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of
Methanophaga
,
Marinobacter
, and
Campylobacter
during the bioprocess, enhancing the consumption of CH
4
and N
2
O. The metagenomic data showed that the intervention of larvae reduced the ratio of (
nirK
+
nirS
+
nor
)/
nosZ
in the residues, thereby reducing the emission of N
2
O. Larvae also increased the functional gene abundance of
nirA
,
nirB
,
nirD
, and
nrfA
in the residues, making nitrite more inclined to be reduced to ammonia instead of N
2
O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.</description><subject>Abundance</subject><subject>Aeration</subject><subject>Ammonia</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioconversion</subject><subject>biodegradability</subject><subject>Biodegradable wastes</subject><subject>Biodegradation</subject><subject>biomass</subject><subject>bioprocessing</subject><subject>Bioreactors</subject><subject>biotransformation</subject><subject>Campylobacter</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Community structure</subject><subject>Composting</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Emissions trading</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>genes</subject><subject>Greenhouse gases</subject><subject>greenhouses</subject><subject>Hermetia illucens</subject><subject>Household wastes</subject><subject>Larvae</subject><subject>Marinobacter</subject><subject>Metagenomics</subject><subject>Methane</subject><subject>Microbial activity</subject><subject>microbial communities</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>nitrites</subject><subject>Nitrogen</subject><subject>Nitrous oxide</subject><subject>Organic wastes</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Residues</subject><subject>rRNA 16S</subject><subject>Sequence analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbmO1jAUhSMEYhZ4AQpkiYYm4CXeShjBgDQSDdSR7VwHD3Y82AnofyGeE_9kWEQBla_l7xzr3NN1jwh-RjCWzyshjIse06FnjGHVqzvdKRFk6OWg9d0_5pPurNZrjCnWVN7vTpgSUijBTrtvL6Nxn1DNcQpQkI8HFE35YgClsIbZrIDmArB8zFtto6kIUqg15KUiX3JCU05Q1-CQDXmCuZjJ2Ajoq6lNag-ogDu4GJYZOVNsXpBZJrSEteQZ9ksjmttaNrcesRRcyTaYiFxOaWtogPqgu-dNrPDw9jzvPrx-9f7iTX_17vLtxYur3lE5qF4SMmk5uAkLbDnhIDS2QIyywk3WU28VVQ57rTlRShrqtGfcU6xAtWUZdt493X1vSv68tWBjS-sgRrNA28DICGdCMI7Z_1E8SD1QLWhDn_yFXuetLC1IowThXAqqGkV3quWvtYAfb0pIphxGgsdj4eNe-NgKH38UPh5Fj2-tN5tg-iX52XAD2A7U9rTMUH7__Q_b7-eEuV4</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xiang, FangMing</creator><creator>Han, LuYing</creator><creator>Jiang, ShuoYun</creator><creator>Xu, XinHua</creator><creator>Zhang, ZhiJian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4133-9620</orcidid></search><sort><creationdate>20240501</creationdate><title>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</title><author>Xiang, FangMing ; Han, LuYing ; Jiang, ShuoYun ; Xu, XinHua ; Zhang, ZhiJian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2748-711d974cd060b515e690be1a8b6cdbf2fb828c0f9951887a2c9f35f208e8161a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Aeration</topic><topic>Ammonia</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioconversion</topic><topic>biodegradability</topic><topic>Biodegradable wastes</topic><topic>Biodegradation</topic><topic>biomass</topic><topic>bioprocessing</topic><topic>Bioreactors</topic><topic>biotransformation</topic><topic>Campylobacter</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Community structure</topic><topic>Composting</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Emissions trading</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>genes</topic><topic>Greenhouse gases</topic><topic>greenhouses</topic><topic>Hermetia illucens</topic><topic>Household wastes</topic><topic>Larvae</topic><topic>Marinobacter</topic><topic>Metagenomics</topic><topic>Methane</topic><topic>Microbial activity</topic><topic>microbial communities</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>nitrites</topic><topic>Nitrogen</topic><topic>Nitrous oxide</topic><topic>Organic wastes</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Residues</topic><topic>rRNA 16S</topic><topic>Sequence analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, FangMing</creatorcontrib><creatorcontrib>Han, LuYing</creatorcontrib><creatorcontrib>Jiang, ShuoYun</creatorcontrib><creatorcontrib>Xu, XinHua</creatorcontrib><creatorcontrib>Zhang, ZhiJian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, FangMing</au><au>Han, LuYing</au><au>Jiang, ShuoYun</au><au>Xu, XinHua</au><au>Zhang, ZhiJian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>31</volume><issue>23</issue><spage>33347</spage><epage>33359</epage><pages>33347-33359</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO
2
, CH
4
, and N
2
O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of
Methanophaga
,
Marinobacter
, and
Campylobacter
during the bioprocess, enhancing the consumption of CH
4
and N
2
O. The metagenomic data showed that the intervention of larvae reduced the ratio of (
nirK
+
nirS
+
nor
)/
nosZ
in the residues, thereby reducing the emission of N
2
O. Larvae also increased the functional gene abundance of
nirA
,
nirB
,
nirD
, and
nrfA
in the residues, making nitrite more inclined to be reduced to ammonia instead of N
2
O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38676863</pmid><doi>10.1007/s11356-024-33308-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4133-9620</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2024-05, Vol.31 (23), p.33347-33359 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_3047942962 |
source | Springer Nature - Complete Springer Journals |
subjects | Abundance Aeration Ammonia Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bioconversion biodegradability Biodegradable wastes Biodegradation biomass bioprocessing Bioreactors biotransformation Campylobacter Carbon Carbon dioxide Community structure Composting Earth and Environmental Science Ecotoxicology Emissions Emissions control Emissions trading Environment Environmental Chemistry Environmental Health genes Greenhouse gases greenhouses Hermetia illucens Household wastes Larvae Marinobacter Metagenomics Methane Microbial activity microbial communities microbiome Microbiomes Microorganisms nitrites Nitrogen Nitrous oxide Organic wastes Relative abundance Research Article Residues rRNA 16S Sequence analysis Waste Water Technology Water Management Water Pollution Control |
title | Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20soldier%20fly%20larvae%20mitigate%20greenhouse%20gas%20emissions%20from%20domestic%20biodegradable%20waste%20by%20recycling%20carbon%20and%20nitrogen%20and%20reconstructing%20microbial%20communities&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Xiang,%20FangMing&rft.date=2024-05-01&rft.volume=31&rft.issue=23&rft.spage=33347&rft.epage=33359&rft.pages=33347-33359&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-33308-8&rft_dat=%3Cproquest_cross%3E3047942962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061557628&rft_id=info:pmid/38676863&rfr_iscdi=true |