Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities

Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-05, Vol.31 (23), p.33347-33359
Hauptverfasser: Xiang, FangMing, Han, LuYing, Jiang, ShuoYun, Xu, XinHua, Zhang, ZhiJian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33359
container_issue 23
container_start_page 33347
container_title Environmental science and pollution research international
container_volume 31
creator Xiang, FangMing
Han, LuYing
Jiang, ShuoYun
Xu, XinHua
Zhang, ZhiJian
description Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO 2 , CH 4 , and N 2 O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga , Marinobacter , and Campylobacter during the bioprocess, enhancing the consumption of CH 4 and N 2 O. The metagenomic data showed that the intervention of larvae reduced the ratio of ( nirK  +  nirS  +  nor )/ nosZ in the residues, thereby reducing the emission of N 2 O. Larvae also increased the functional gene abundance of nirA , nirB , nirD , and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N 2 O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.
doi_str_mv 10.1007/s11356-024-33308-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047942962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047942962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2748-711d974cd060b515e690be1a8b6cdbf2fb828c0f9951887a2c9f35f208e8161a3</originalsourceid><addsrcrecordid>eNqFkbmO1jAUhSMEYhZ4AQpkiYYm4CXeShjBgDQSDdSR7VwHD3Y82AnofyGeE_9kWEQBla_l7xzr3NN1jwh-RjCWzyshjIse06FnjGHVqzvdKRFk6OWg9d0_5pPurNZrjCnWVN7vTpgSUijBTrtvL6Nxn1DNcQpQkI8HFE35YgClsIbZrIDmArB8zFtto6kIUqg15KUiX3JCU05Q1-CQDXmCuZjJ2Ajoq6lNag-ogDu4GJYZOVNsXpBZJrSEteQZ9ksjmttaNrcesRRcyTaYiFxOaWtogPqgu-dNrPDw9jzvPrx-9f7iTX_17vLtxYur3lE5qF4SMmk5uAkLbDnhIDS2QIyywk3WU28VVQ57rTlRShrqtGfcU6xAtWUZdt493X1vSv68tWBjS-sgRrNA28DICGdCMI7Z_1E8SD1QLWhDn_yFXuetLC1IowThXAqqGkV3quWvtYAfb0pIphxGgsdj4eNe-NgKH38UPh5Fj2-tN5tg-iX52XAD2A7U9rTMUH7__Q_b7-eEuV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061557628</pqid></control><display><type>article</type><title>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</title><source>Springer Nature - Complete Springer Journals</source><creator>Xiang, FangMing ; Han, LuYing ; Jiang, ShuoYun ; Xu, XinHua ; Zhang, ZhiJian</creator><creatorcontrib>Xiang, FangMing ; Han, LuYing ; Jiang, ShuoYun ; Xu, XinHua ; Zhang, ZhiJian</creatorcontrib><description>Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO 2 , CH 4 , and N 2 O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga , Marinobacter , and Campylobacter during the bioprocess, enhancing the consumption of CH 4 and N 2 O. The metagenomic data showed that the intervention of larvae reduced the ratio of ( nirK  +  nirS  +  nor )/ nosZ in the residues, thereby reducing the emission of N 2 O. Larvae also increased the functional gene abundance of nirA , nirB , nirD , and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N 2 O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-33308-8</identifier><identifier>PMID: 38676863</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abundance ; Aeration ; Ammonia ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioconversion ; biodegradability ; Biodegradable wastes ; Biodegradation ; biomass ; bioprocessing ; Bioreactors ; biotransformation ; Campylobacter ; Carbon ; Carbon dioxide ; Community structure ; Composting ; Earth and Environmental Science ; Ecotoxicology ; Emissions ; Emissions control ; Emissions trading ; Environment ; Environmental Chemistry ; Environmental Health ; genes ; Greenhouse gases ; greenhouses ; Hermetia illucens ; Household wastes ; Larvae ; Marinobacter ; Metagenomics ; Methane ; Microbial activity ; microbial communities ; microbiome ; Microbiomes ; Microorganisms ; nitrites ; Nitrogen ; Nitrous oxide ; Organic wastes ; Relative abundance ; Research Article ; Residues ; rRNA 16S ; Sequence analysis ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2024-05, Vol.31 (23), p.33347-33359</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2748-711d974cd060b515e690be1a8b6cdbf2fb828c0f9951887a2c9f35f208e8161a3</cites><orcidid>0000-0002-4133-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-33308-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-33308-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38676863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, FangMing</creatorcontrib><creatorcontrib>Han, LuYing</creatorcontrib><creatorcontrib>Jiang, ShuoYun</creatorcontrib><creatorcontrib>Xu, XinHua</creatorcontrib><creatorcontrib>Zhang, ZhiJian</creatorcontrib><title>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO 2 , CH 4 , and N 2 O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga , Marinobacter , and Campylobacter during the bioprocess, enhancing the consumption of CH 4 and N 2 O. The metagenomic data showed that the intervention of larvae reduced the ratio of ( nirK  +  nirS  +  nor )/ nosZ in the residues, thereby reducing the emission of N 2 O. Larvae also increased the functional gene abundance of nirA , nirB , nirD , and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N 2 O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.</description><subject>Abundance</subject><subject>Aeration</subject><subject>Ammonia</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioconversion</subject><subject>biodegradability</subject><subject>Biodegradable wastes</subject><subject>Biodegradation</subject><subject>biomass</subject><subject>bioprocessing</subject><subject>Bioreactors</subject><subject>biotransformation</subject><subject>Campylobacter</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Community structure</subject><subject>Composting</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Emissions trading</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>genes</subject><subject>Greenhouse gases</subject><subject>greenhouses</subject><subject>Hermetia illucens</subject><subject>Household wastes</subject><subject>Larvae</subject><subject>Marinobacter</subject><subject>Metagenomics</subject><subject>Methane</subject><subject>Microbial activity</subject><subject>microbial communities</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>nitrites</subject><subject>Nitrogen</subject><subject>Nitrous oxide</subject><subject>Organic wastes</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Residues</subject><subject>rRNA 16S</subject><subject>Sequence analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbmO1jAUhSMEYhZ4AQpkiYYm4CXeShjBgDQSDdSR7VwHD3Y82AnofyGeE_9kWEQBla_l7xzr3NN1jwh-RjCWzyshjIse06FnjGHVqzvdKRFk6OWg9d0_5pPurNZrjCnWVN7vTpgSUijBTrtvL6Nxn1DNcQpQkI8HFE35YgClsIbZrIDmArB8zFtto6kIUqg15KUiX3JCU05Q1-CQDXmCuZjJ2Ajoq6lNag-ogDu4GJYZOVNsXpBZJrSEteQZ9ksjmttaNrcesRRcyTaYiFxOaWtogPqgu-dNrPDw9jzvPrx-9f7iTX_17vLtxYur3lE5qF4SMmk5uAkLbDnhIDS2QIyywk3WU28VVQ57rTlRShrqtGfcU6xAtWUZdt493X1vSv68tWBjS-sgRrNA28DICGdCMI7Z_1E8SD1QLWhDn_yFXuetLC1IowThXAqqGkV3quWvtYAfb0pIphxGgsdj4eNe-NgKH38UPh5Fj2-tN5tg-iX52XAD2A7U9rTMUH7__Q_b7-eEuV4</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xiang, FangMing</creator><creator>Han, LuYing</creator><creator>Jiang, ShuoYun</creator><creator>Xu, XinHua</creator><creator>Zhang, ZhiJian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4133-9620</orcidid></search><sort><creationdate>20240501</creationdate><title>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</title><author>Xiang, FangMing ; Han, LuYing ; Jiang, ShuoYun ; Xu, XinHua ; Zhang, ZhiJian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2748-711d974cd060b515e690be1a8b6cdbf2fb828c0f9951887a2c9f35f208e8161a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Aeration</topic><topic>Ammonia</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioconversion</topic><topic>biodegradability</topic><topic>Biodegradable wastes</topic><topic>Biodegradation</topic><topic>biomass</topic><topic>bioprocessing</topic><topic>Bioreactors</topic><topic>biotransformation</topic><topic>Campylobacter</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Community structure</topic><topic>Composting</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Emissions trading</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>genes</topic><topic>Greenhouse gases</topic><topic>greenhouses</topic><topic>Hermetia illucens</topic><topic>Household wastes</topic><topic>Larvae</topic><topic>Marinobacter</topic><topic>Metagenomics</topic><topic>Methane</topic><topic>Microbial activity</topic><topic>microbial communities</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>nitrites</topic><topic>Nitrogen</topic><topic>Nitrous oxide</topic><topic>Organic wastes</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Residues</topic><topic>rRNA 16S</topic><topic>Sequence analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, FangMing</creatorcontrib><creatorcontrib>Han, LuYing</creatorcontrib><creatorcontrib>Jiang, ShuoYun</creatorcontrib><creatorcontrib>Xu, XinHua</creatorcontrib><creatorcontrib>Zhang, ZhiJian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, FangMing</au><au>Han, LuYing</au><au>Jiang, ShuoYun</au><au>Xu, XinHua</au><au>Zhang, ZhiJian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>31</volume><issue>23</issue><spage>33347</spage><epage>33359</epage><pages>33347-33359</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO 2 , CH 4 , and N 2 O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga , Marinobacter , and Campylobacter during the bioprocess, enhancing the consumption of CH 4 and N 2 O. The metagenomic data showed that the intervention of larvae reduced the ratio of ( nirK  +  nirS  +  nor )/ nosZ in the residues, thereby reducing the emission of N 2 O. Larvae also increased the functional gene abundance of nirA , nirB , nirD , and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N 2 O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38676863</pmid><doi>10.1007/s11356-024-33308-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4133-9620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2024-05, Vol.31 (23), p.33347-33359
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_3047942962
source Springer Nature - Complete Springer Journals
subjects Abundance
Aeration
Ammonia
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bioconversion
biodegradability
Biodegradable wastes
Biodegradation
biomass
bioprocessing
Bioreactors
biotransformation
Campylobacter
Carbon
Carbon dioxide
Community structure
Composting
Earth and Environmental Science
Ecotoxicology
Emissions
Emissions control
Emissions trading
Environment
Environmental Chemistry
Environmental Health
genes
Greenhouse gases
greenhouses
Hermetia illucens
Household wastes
Larvae
Marinobacter
Metagenomics
Methane
Microbial activity
microbial communities
microbiome
Microbiomes
Microorganisms
nitrites
Nitrogen
Nitrous oxide
Organic wastes
Relative abundance
Research Article
Residues
rRNA 16S
Sequence analysis
Waste Water Technology
Water Management
Water Pollution Control
title Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20soldier%20fly%20larvae%20mitigate%20greenhouse%20gas%20emissions%20from%20domestic%20biodegradable%20waste%20by%20recycling%20carbon%20and%20nitrogen%20and%20reconstructing%20microbial%20communities&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Xiang,%20FangMing&rft.date=2024-05-01&rft.volume=31&rft.issue=23&rft.spage=33347&rft.epage=33359&rft.pages=33347-33359&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-33308-8&rft_dat=%3Cproquest_cross%3E3047942962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061557628&rft_id=info:pmid/38676863&rfr_iscdi=true