Lysophosphatidic acid (LPA) receptor-mediated signaling regulates hypoxia-induced biological functions of lymphatic endothelial cells

The tumor microenvironment is an extremely complex composed of cancer cells and various non-cancer cells, including lymphatic endothelial cells. Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) activate a variety of malignant properties in human malignancies. In the present study, we examined th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2024-06, Vol.715, p.149982, Article 149982
Hauptverfasser: Yamamoto, Mao, Takai, Miwa, Yashiro, Narumi, Hayasaka, Haruko, Tsujiuchi, Toshifumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tumor microenvironment is an extremely complex composed of cancer cells and various non-cancer cells, including lymphatic endothelial cells. Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) activate a variety of malignant properties in human malignancies. In the present study, we examined the roles of LPA receptor-mediated signaling in biological responses of lymphatic endothelial SVEC4-10 cells induced by hypoxia. Lpar1, Lpar2 and Lpar3 expressions were decreased in SVEC4-10 cells cultured at hypoxic conditions (1 % O2). LPA had no impact on the cell growth activity of SVEC4-10 cells in 21 % O2 culture conditions. Conversely, the cell growth activity of SVEC4-10 cells in 1 % O2 culture conditions was reduced by LPA. The cell motile activity of SVEC4-10 cells was elevated by 1 % O2 culture conditions. GRI-977143 (LPA2 agonist) and (2S)-OMPT (LPA3 agonist) stimulated SVEC4-10 cell motility as well as AM966 (LPA1 antagonist). In tube formation assay, the tube formation of SVEC4-10 cells in 1 % O2 culture conditions was markedly increased, in comparison with 21 % O2. GRI-977143 and (2S)-OMPT elevated the tube formation of SVEC4-10 cells. Furthermore, the tube formation of SVEC4-10 cells was increased by AM966. These results suggest that LPA receptor-mediated signaling contributes to the modulation of hypoxic-induced biological functions of lymphatic endothelial cells. •LPA receptor expressions were decreased in lymphatic endothelial SVEC4-10 cells under hypoxia (1 % O2.).•SVEC4-10 cell motility was enhanced by culturing at 1 % O2, compared with 21 % O2.•In the presence of LPA, tube formation of SVEC4-10 cells cultured at 1 % O2 was elevated.•Tube formation of SVEC4-10 cells was increased by LPA1 antagonist AM966.•LPA receptor-mediated signaling regulates biological functions of SVEC4-10 cells under hypoxic conditions.
ISSN:0006-291X
1090-2104
1090-2104
DOI:10.1016/j.bbrc.2024.149982