Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification

Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prosta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2024-10, Vol.31 (10), p.4096-4106
Hauptverfasser: Simon, Benjamin D., Merriman, Katie M., Harmon, Stephanie A., Tetreault, Jesse, Yilmaz, Enis C., Blake, Zoë, Merino, Maria J., An, Julie Y., Marko, Jamie, Law, Yan Mee, Gurram, Sandeep, Wood, Bradford J., Choyke, Peter L., Pinto, Peter A., Turkbey, Baris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4106
container_issue 10
container_start_page 4096
container_title Academic radiology
container_volume 31
creator Simon, Benjamin D.
Merriman, Katie M.
Harmon, Stephanie A.
Tetreault, Jesse
Yilmaz, Enis C.
Blake, Zoë
Merino, Maria J.
An, Julie Y.
Marko, Jamie
Law, Yan Mee
Gurram, Sandeep
Wood, Bradford J.
Choyke, Peter L.
Pinto, Peter A.
Turkbey, Baris
description Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0–3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.
doi_str_mv 10.1016/j.acra.2024.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3047939664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633224002204</els_id><sourcerecordid>3047939664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-950bca18a2844ebd4d35e52f8902ebb5aa6e5cbebf5e8cf171931a9f427206513</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIiHwAyyQl2x68KvdbolNNHkQaVCiCNZWtV2NPJruHmxPBJ_BH2MzIctIJT_K18euuoS852zFGdeftitwEVaCCbViJTh_QU656UyjmNIvy5p1utFSihPyJqUtY7zVRr4mJ9LojplOnZI_54e8TJDR0wvM6HJYZgqzp9cRfJh_0GWkl79yhH1cUoYcXN3inKqunN0d00jXMDuMFDL9en9DHwKUTHLg_4FxTzcIca7ACr8vwzLRqyViynS9g5TCGBzU19-SVyPsEr57nM_I96vLb-svzeb2-mZ9vmmcZF1u-pYNDrgBYZTCwSsvW2zFaHomcBhaAI2tG3AYWzRu5B3vJYd-VKITTLdcnpGPR26p7Oeh_MNOITnc7WDG5ZCsZKrrZa-1KlJxlLpSbYo42n0ME8TfljNbrbBbW62w1QrLSvDK__DIPwwT-qcr_3tfBJ-PAixVPgSMNrmApYs-xGKE9Ut4jv8Xy6mb_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047939664</pqid></control><display><type>article</type><title>Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Simon, Benjamin D. ; Merriman, Katie M. ; Harmon, Stephanie A. ; Tetreault, Jesse ; Yilmaz, Enis C. ; Blake, Zoë ; Merino, Maria J. ; An, Julie Y. ; Marko, Jamie ; Law, Yan Mee ; Gurram, Sandeep ; Wood, Bradford J. ; Choyke, Peter L. ; Pinto, Peter A. ; Turkbey, Baris</creator><creatorcontrib>Simon, Benjamin D. ; Merriman, Katie M. ; Harmon, Stephanie A. ; Tetreault, Jesse ; Yilmaz, Enis C. ; Blake, Zoë ; Merino, Maria J. ; An, Julie Y. ; Marko, Jamie ; Law, Yan Mee ; Gurram, Sandeep ; Wood, Bradford J. ; Choyke, Peter L. ; Pinto, Peter A. ; Turkbey, Baris</creatorcontrib><description>Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0–3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.</description><identifier>ISSN: 1076-6332</identifier><identifier>ISSN: 1878-4046</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2024.04.011</identifier><identifier>PMID: 38670874</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Deep Learning ; Extraprostatic Extension ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; MRI ; Neoplasm Grading ; Prospective Studies ; Prostate Cancer ; Prostatectomy ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - surgery ; Random Forest ; Sensitivity and Specificity</subject><ispartof>Academic radiology, 2024-10, Vol.31 (10), p.4096-4106</ispartof><rights>2024</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-950bca18a2844ebd4d35e52f8902ebb5aa6e5cbebf5e8cf171931a9f427206513</cites><orcidid>0000-0003-0853-6494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acra.2024.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38670874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Benjamin D.</creatorcontrib><creatorcontrib>Merriman, Katie M.</creatorcontrib><creatorcontrib>Harmon, Stephanie A.</creatorcontrib><creatorcontrib>Tetreault, Jesse</creatorcontrib><creatorcontrib>Yilmaz, Enis C.</creatorcontrib><creatorcontrib>Blake, Zoë</creatorcontrib><creatorcontrib>Merino, Maria J.</creatorcontrib><creatorcontrib>An, Julie Y.</creatorcontrib><creatorcontrib>Marko, Jamie</creatorcontrib><creatorcontrib>Law, Yan Mee</creatorcontrib><creatorcontrib>Gurram, Sandeep</creatorcontrib><creatorcontrib>Wood, Bradford J.</creatorcontrib><creatorcontrib>Choyke, Peter L.</creatorcontrib><creatorcontrib>Pinto, Peter A.</creatorcontrib><creatorcontrib>Turkbey, Baris</creatorcontrib><title>Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0–3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.</description><subject>Aged</subject><subject>Deep Learning</subject><subject>Extraprostatic Extension</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>Neoplasm Grading</subject><subject>Prospective Studies</subject><subject>Prostate Cancer</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Random Forest</subject><subject>Sensitivity and Specificity</subject><issn>1076-6332</issn><issn>1878-4046</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIiHwAyyQl2x68KvdbolNNHkQaVCiCNZWtV2NPJruHmxPBJ_BH2MzIctIJT_K18euuoS852zFGdeftitwEVaCCbViJTh_QU656UyjmNIvy5p1utFSihPyJqUtY7zVRr4mJ9LojplOnZI_54e8TJDR0wvM6HJYZgqzp9cRfJh_0GWkl79yhH1cUoYcXN3inKqunN0d00jXMDuMFDL9en9DHwKUTHLg_4FxTzcIca7ACr8vwzLRqyViynS9g5TCGBzU19-SVyPsEr57nM_I96vLb-svzeb2-mZ9vmmcZF1u-pYNDrgBYZTCwSsvW2zFaHomcBhaAI2tG3AYWzRu5B3vJYd-VKITTLdcnpGPR26p7Oeh_MNOITnc7WDG5ZCsZKrrZa-1KlJxlLpSbYo42n0ME8TfljNbrbBbW62w1QrLSvDK__DIPwwT-qcr_3tfBJ-PAixVPgSMNrmApYs-xGKE9Ut4jv8Xy6mb_g</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Simon, Benjamin D.</creator><creator>Merriman, Katie M.</creator><creator>Harmon, Stephanie A.</creator><creator>Tetreault, Jesse</creator><creator>Yilmaz, Enis C.</creator><creator>Blake, Zoë</creator><creator>Merino, Maria J.</creator><creator>An, Julie Y.</creator><creator>Marko, Jamie</creator><creator>Law, Yan Mee</creator><creator>Gurram, Sandeep</creator><creator>Wood, Bradford J.</creator><creator>Choyke, Peter L.</creator><creator>Pinto, Peter A.</creator><creator>Turkbey, Baris</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0853-6494</orcidid></search><sort><creationdate>20241001</creationdate><title>Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification</title><author>Simon, Benjamin D. ; Merriman, Katie M. ; Harmon, Stephanie A. ; Tetreault, Jesse ; Yilmaz, Enis C. ; Blake, Zoë ; Merino, Maria J. ; An, Julie Y. ; Marko, Jamie ; Law, Yan Mee ; Gurram, Sandeep ; Wood, Bradford J. ; Choyke, Peter L. ; Pinto, Peter A. ; Turkbey, Baris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-950bca18a2844ebd4d35e52f8902ebb5aa6e5cbebf5e8cf171931a9f427206513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Deep Learning</topic><topic>Extraprostatic Extension</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>Neoplasm Grading</topic><topic>Prospective Studies</topic><topic>Prostate Cancer</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Random Forest</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Benjamin D.</creatorcontrib><creatorcontrib>Merriman, Katie M.</creatorcontrib><creatorcontrib>Harmon, Stephanie A.</creatorcontrib><creatorcontrib>Tetreault, Jesse</creatorcontrib><creatorcontrib>Yilmaz, Enis C.</creatorcontrib><creatorcontrib>Blake, Zoë</creatorcontrib><creatorcontrib>Merino, Maria J.</creatorcontrib><creatorcontrib>An, Julie Y.</creatorcontrib><creatorcontrib>Marko, Jamie</creatorcontrib><creatorcontrib>Law, Yan Mee</creatorcontrib><creatorcontrib>Gurram, Sandeep</creatorcontrib><creatorcontrib>Wood, Bradford J.</creatorcontrib><creatorcontrib>Choyke, Peter L.</creatorcontrib><creatorcontrib>Pinto, Peter A.</creatorcontrib><creatorcontrib>Turkbey, Baris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Benjamin D.</au><au>Merriman, Katie M.</au><au>Harmon, Stephanie A.</au><au>Tetreault, Jesse</au><au>Yilmaz, Enis C.</au><au>Blake, Zoë</au><au>Merino, Maria J.</au><au>An, Julie Y.</au><au>Marko, Jamie</au><au>Law, Yan Mee</au><au>Gurram, Sandeep</au><au>Wood, Bradford J.</au><au>Choyke, Peter L.</au><au>Pinto, Peter A.</au><au>Turkbey, Baris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>31</volume><issue>10</issue><spage>4096</spage><epage>4106</epage><pages>4096-4106</pages><issn>1076-6332</issn><issn>1878-4046</issn><eissn>1878-4046</eissn><abstract>Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0–3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38670874</pmid><doi>10.1016/j.acra.2024.04.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0853-6494</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-6332
ispartof Academic radiology, 2024-10, Vol.31 (10), p.4096-4106
issn 1076-6332
1878-4046
1878-4046
language eng
recordid cdi_proquest_miscellaneous_3047939664
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Deep Learning
Extraprostatic Extension
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
MRI
Neoplasm Grading
Prospective Studies
Prostate Cancer
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
Prostatic Neoplasms - surgery
Random Forest
Sensitivity and Specificity
title Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Detection%20and%20Grading%20of%20Extraprostatic%20Extension%20of%20Prostate%20Cancer%20at%20MRI%20via%20Cascaded%20Deep%20Learning%20and%20Random%20Forest%20Classification&rft.jtitle=Academic%20radiology&rft.au=Simon,%20Benjamin%20D.&rft.date=2024-10-01&rft.volume=31&rft.issue=10&rft.spage=4096&rft.epage=4106&rft.pages=4096-4106&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2024.04.011&rft_dat=%3Cproquest_cross%3E3047939664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047939664&rft_id=info:pmid/38670874&rft_els_id=S1076633224002204&rfr_iscdi=true