Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia

•We used a novel computational method to estimate emotion processing.•Our measure, “emotional alignment”, is derived from brief spoken language samples.•Patients with schizophrenia had impaired emotional alignment relative to controls.•Exogenous oxytocin enhanced emotional alignment among patients....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychiatry research 2024-06, Vol.336, p.115893-115893, Article 115893
Hauptverfasser: Bradley, Ellen R., Portanova, Jake, Woolley, Josh D., Buck, Benjamin, Painter, Ian S., Hankin, Michael, Xu, Weizhe, Cohen, Trevor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115893
container_issue
container_start_page 115893
container_title Psychiatry research
container_volume 336
creator Bradley, Ellen R.
Portanova, Jake
Woolley, Josh D.
Buck, Benjamin
Painter, Ian S.
Hankin, Michael
Xu, Weizhe
Cohen, Trevor
description •We used a novel computational method to estimate emotion processing.•Our measure, “emotional alignment”, is derived from brief spoken language samples.•Patients with schizophrenia had impaired emotional alignment relative to controls.•Exogenous oxytocin enhanced emotional alignment among patients. Abnormal emotion processing is a core feature of schizophrenia spectrum disorders (SSDs) that encompasses multiple operations. While deficits in some areas have been well-characterized, we understand less about abnormalities in the emotion processing that happens through language, which is highly relevant for social life. Here, we introduce a novel method using deep learning to estimate emotion processing rapidly from spoken language, testing this approach in male-identified patients with SSDs (n = 37) and healthy controls (n = 51). Using free responses to evocative stimuli, we derived a measure of appropriateness, or “emotional alignment” (EA). We examined psychometric characteristics of EA and its sensitivity to a single-dose challenge of oxytocin, a neuropeptide shown to enhance the salience of socioemotional information in SSDs. Patients showed impaired EA relative to controls, and impairment correlated with poorer social cognitive skill and more severe motivation and pleasure deficits. Adding EA to a logistic regression model with language-based measures of formal thought disorder (FTD) improved classification of patients versus controls. Lastly, oxytocin administration improved EA but not FTD among patients. While additional validation work is needed, these initial results suggest that an automated assay using spoken language may be a promising approach to assess emotion processing in SSDs.
doi_str_mv 10.1016/j.psychres.2024.115893
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046515984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165178124001781</els_id><sourcerecordid>3046515984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-548d1e5a576e7a6a6f4dddb3bf96d3c0c5d3732ff2dd7a4905a63f21a271dba43</originalsourceid><addsrcrecordid>eNqFkEtP3DAQgK2qVVlo_wLysZcsfsR2wgmEClRCQkjlbDn2hPUqsYOdIC2_vl4WuPYwmsN88_oQOqVkTQmVZ9v1lHd2kyCvGWH1mlLRtPwLWtFGsUpRxr-iVQFFRVVDj9BxzltCCKNt-x0d8UYKVSuxQs8Piwmz73c-PGHThZhGM2AY4-xjwFOKFnIutXN8iUN8gQHbOE7LbPb1QpqcCzBCmPEI8yY6bEKJaRq8fWOwDzjbjX-NU7k2ePMDfevNkOHnez5Bj9e__17dVnf3N3-uLu8qy6mYK1E3joIwQklQRhrZ1865jnd9Kx23xArHFWd9z5xTpm6JMJL3jBqmqOtMzU_Qr8Pc8sTzAnnWo88WhsEEiEvWnNRSUNE2e1QeUJtizgl6PSU_mrTTlOi9br3VH7r1Xrc-6C6Np-87lm4E99n24bcAFwcAyqcvHpLO1kOw4HwCO2sX_f92_AN3nZhj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046515984</pqid></control><display><type>article</type><title>Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bradley, Ellen R. ; Portanova, Jake ; Woolley, Josh D. ; Buck, Benjamin ; Painter, Ian S. ; Hankin, Michael ; Xu, Weizhe ; Cohen, Trevor</creator><creatorcontrib>Bradley, Ellen R. ; Portanova, Jake ; Woolley, Josh D. ; Buck, Benjamin ; Painter, Ian S. ; Hankin, Michael ; Xu, Weizhe ; Cohen, Trevor</creatorcontrib><description>•We used a novel computational method to estimate emotion processing.•Our measure, “emotional alignment”, is derived from brief spoken language samples.•Patients with schizophrenia had impaired emotional alignment relative to controls.•Exogenous oxytocin enhanced emotional alignment among patients. Abnormal emotion processing is a core feature of schizophrenia spectrum disorders (SSDs) that encompasses multiple operations. While deficits in some areas have been well-characterized, we understand less about abnormalities in the emotion processing that happens through language, which is highly relevant for social life. Here, we introduce a novel method using deep learning to estimate emotion processing rapidly from spoken language, testing this approach in male-identified patients with SSDs (n = 37) and healthy controls (n = 51). Using free responses to evocative stimuli, we derived a measure of appropriateness, or “emotional alignment” (EA). We examined psychometric characteristics of EA and its sensitivity to a single-dose challenge of oxytocin, a neuropeptide shown to enhance the salience of socioemotional information in SSDs. Patients showed impaired EA relative to controls, and impairment correlated with poorer social cognitive skill and more severe motivation and pleasure deficits. Adding EA to a logistic regression model with language-based measures of formal thought disorder (FTD) improved classification of patients versus controls. Lastly, oxytocin administration improved EA but not FTD among patients. While additional validation work is needed, these initial results suggest that an automated assay using spoken language may be a promising approach to assess emotion processing in SSDs.</description><identifier>ISSN: 0165-1781</identifier><identifier>EISSN: 1872-7123</identifier><identifier>DOI: 10.1016/j.psychres.2024.115893</identifier><identifier>PMID: 38657475</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adult ; Computational linguistics ; Deep Learning ; Emotion processing ; Emotions - physiology ; Humans ; Language ; Male ; Middle Aged ; Oxytocin ; Oxytocin - administration &amp; dosage ; Schizophrenia - physiopathology ; Schizophrenia spectrum disorders ; Schizophrenic Psychology ; Speech</subject><ispartof>Psychiatry research, 2024-06, Vol.336, p.115893-115893, Article 115893</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-548d1e5a576e7a6a6f4dddb3bf96d3c0c5d3732ff2dd7a4905a63f21a271dba43</cites><orcidid>0000-0001-6787-1490 ; 0000-0003-0159-6697 ; 0000-0003-2841-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165178124001781$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38657475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradley, Ellen R.</creatorcontrib><creatorcontrib>Portanova, Jake</creatorcontrib><creatorcontrib>Woolley, Josh D.</creatorcontrib><creatorcontrib>Buck, Benjamin</creatorcontrib><creatorcontrib>Painter, Ian S.</creatorcontrib><creatorcontrib>Hankin, Michael</creatorcontrib><creatorcontrib>Xu, Weizhe</creatorcontrib><creatorcontrib>Cohen, Trevor</creatorcontrib><title>Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia</title><title>Psychiatry research</title><addtitle>Psychiatry Res</addtitle><description>•We used a novel computational method to estimate emotion processing.•Our measure, “emotional alignment”, is derived from brief spoken language samples.•Patients with schizophrenia had impaired emotional alignment relative to controls.•Exogenous oxytocin enhanced emotional alignment among patients. Abnormal emotion processing is a core feature of schizophrenia spectrum disorders (SSDs) that encompasses multiple operations. While deficits in some areas have been well-characterized, we understand less about abnormalities in the emotion processing that happens through language, which is highly relevant for social life. Here, we introduce a novel method using deep learning to estimate emotion processing rapidly from spoken language, testing this approach in male-identified patients with SSDs (n = 37) and healthy controls (n = 51). Using free responses to evocative stimuli, we derived a measure of appropriateness, or “emotional alignment” (EA). We examined psychometric characteristics of EA and its sensitivity to a single-dose challenge of oxytocin, a neuropeptide shown to enhance the salience of socioemotional information in SSDs. Patients showed impaired EA relative to controls, and impairment correlated with poorer social cognitive skill and more severe motivation and pleasure deficits. Adding EA to a logistic regression model with language-based measures of formal thought disorder (FTD) improved classification of patients versus controls. Lastly, oxytocin administration improved EA but not FTD among patients. While additional validation work is needed, these initial results suggest that an automated assay using spoken language may be a promising approach to assess emotion processing in SSDs.</description><subject>Adult</subject><subject>Computational linguistics</subject><subject>Deep Learning</subject><subject>Emotion processing</subject><subject>Emotions - physiology</subject><subject>Humans</subject><subject>Language</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Oxytocin</subject><subject>Oxytocin - administration &amp; dosage</subject><subject>Schizophrenia - physiopathology</subject><subject>Schizophrenia spectrum disorders</subject><subject>Schizophrenic Psychology</subject><subject>Speech</subject><issn>0165-1781</issn><issn>1872-7123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtP3DAQgK2qVVlo_wLysZcsfsR2wgmEClRCQkjlbDn2hPUqsYOdIC2_vl4WuPYwmsN88_oQOqVkTQmVZ9v1lHd2kyCvGWH1mlLRtPwLWtFGsUpRxr-iVQFFRVVDj9BxzltCCKNt-x0d8UYKVSuxQs8Piwmz73c-PGHThZhGM2AY4-xjwFOKFnIutXN8iUN8gQHbOE7LbPb1QpqcCzBCmPEI8yY6bEKJaRq8fWOwDzjbjX-NU7k2ePMDfevNkOHnez5Bj9e__17dVnf3N3-uLu8qy6mYK1E3joIwQklQRhrZ1865jnd9Kx23xArHFWd9z5xTpm6JMJL3jBqmqOtMzU_Qr8Pc8sTzAnnWo88WhsEEiEvWnNRSUNE2e1QeUJtizgl6PSU_mrTTlOi9br3VH7r1Xrc-6C6Np-87lm4E99n24bcAFwcAyqcvHpLO1kOw4HwCO2sX_f92_AN3nZhj</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Bradley, Ellen R.</creator><creator>Portanova, Jake</creator><creator>Woolley, Josh D.</creator><creator>Buck, Benjamin</creator><creator>Painter, Ian S.</creator><creator>Hankin, Michael</creator><creator>Xu, Weizhe</creator><creator>Cohen, Trevor</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6787-1490</orcidid><orcidid>https://orcid.org/0000-0003-0159-6697</orcidid><orcidid>https://orcid.org/0000-0003-2841-0493</orcidid></search><sort><creationdate>202406</creationdate><title>Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia</title><author>Bradley, Ellen R. ; Portanova, Jake ; Woolley, Josh D. ; Buck, Benjamin ; Painter, Ian S. ; Hankin, Michael ; Xu, Weizhe ; Cohen, Trevor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-548d1e5a576e7a6a6f4dddb3bf96d3c0c5d3732ff2dd7a4905a63f21a271dba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Computational linguistics</topic><topic>Deep Learning</topic><topic>Emotion processing</topic><topic>Emotions - physiology</topic><topic>Humans</topic><topic>Language</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Oxytocin</topic><topic>Oxytocin - administration &amp; dosage</topic><topic>Schizophrenia - physiopathology</topic><topic>Schizophrenia spectrum disorders</topic><topic>Schizophrenic Psychology</topic><topic>Speech</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradley, Ellen R.</creatorcontrib><creatorcontrib>Portanova, Jake</creatorcontrib><creatorcontrib>Woolley, Josh D.</creatorcontrib><creatorcontrib>Buck, Benjamin</creatorcontrib><creatorcontrib>Painter, Ian S.</creatorcontrib><creatorcontrib>Hankin, Michael</creatorcontrib><creatorcontrib>Xu, Weizhe</creatorcontrib><creatorcontrib>Cohen, Trevor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Psychiatry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradley, Ellen R.</au><au>Portanova, Jake</au><au>Woolley, Josh D.</au><au>Buck, Benjamin</au><au>Painter, Ian S.</au><au>Hankin, Michael</au><au>Xu, Weizhe</au><au>Cohen, Trevor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia</atitle><jtitle>Psychiatry research</jtitle><addtitle>Psychiatry Res</addtitle><date>2024-06</date><risdate>2024</risdate><volume>336</volume><spage>115893</spage><epage>115893</epage><pages>115893-115893</pages><artnum>115893</artnum><issn>0165-1781</issn><eissn>1872-7123</eissn><abstract>•We used a novel computational method to estimate emotion processing.•Our measure, “emotional alignment”, is derived from brief spoken language samples.•Patients with schizophrenia had impaired emotional alignment relative to controls.•Exogenous oxytocin enhanced emotional alignment among patients. Abnormal emotion processing is a core feature of schizophrenia spectrum disorders (SSDs) that encompasses multiple operations. While deficits in some areas have been well-characterized, we understand less about abnormalities in the emotion processing that happens through language, which is highly relevant for social life. Here, we introduce a novel method using deep learning to estimate emotion processing rapidly from spoken language, testing this approach in male-identified patients with SSDs (n = 37) and healthy controls (n = 51). Using free responses to evocative stimuli, we derived a measure of appropriateness, or “emotional alignment” (EA). We examined psychometric characteristics of EA and its sensitivity to a single-dose challenge of oxytocin, a neuropeptide shown to enhance the salience of socioemotional information in SSDs. Patients showed impaired EA relative to controls, and impairment correlated with poorer social cognitive skill and more severe motivation and pleasure deficits. Adding EA to a logistic regression model with language-based measures of formal thought disorder (FTD) improved classification of patients versus controls. Lastly, oxytocin administration improved EA but not FTD among patients. While additional validation work is needed, these initial results suggest that an automated assay using spoken language may be a promising approach to assess emotion processing in SSDs.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>38657475</pmid><doi>10.1016/j.psychres.2024.115893</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6787-1490</orcidid><orcidid>https://orcid.org/0000-0003-0159-6697</orcidid><orcidid>https://orcid.org/0000-0003-2841-0493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-1781
ispartof Psychiatry research, 2024-06, Vol.336, p.115893-115893, Article 115893
issn 0165-1781
1872-7123
language eng
recordid cdi_proquest_miscellaneous_3046515984
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Computational linguistics
Deep Learning
Emotion processing
Emotions - physiology
Humans
Language
Male
Middle Aged
Oxytocin
Oxytocin - administration & dosage
Schizophrenia - physiopathology
Schizophrenia spectrum disorders
Schizophrenic Psychology
Speech
title Quantifying abnormal emotion processing: A novel computational assessment method and application in schizophrenia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20abnormal%20emotion%20processing:%20A%20novel%20computational%20assessment%20method%20and%20application%20in%20schizophrenia&rft.jtitle=Psychiatry%20research&rft.au=Bradley,%20Ellen%20R.&rft.date=2024-06&rft.volume=336&rft.spage=115893&rft.epage=115893&rft.pages=115893-115893&rft.artnum=115893&rft.issn=0165-1781&rft.eissn=1872-7123&rft_id=info:doi/10.1016/j.psychres.2024.115893&rft_dat=%3Cproquest_cross%3E3046515984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046515984&rft_id=info:pmid/38657475&rft_els_id=S0165178124001781&rfr_iscdi=true