Rapid Defect Engineering in FeCoNi/FeAl2O4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High‐Performance Electrocatalysts
Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regul...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-07, Vol.63 (28), p.e202405372-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | e202405372 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Chen, Yuhao Xu, Jiang Chen, Yujie Wang, Luqi Jiang, Shuyun Xie, Zong‐Han Zhang, Tianran Munroe, Paul Peng, Shengjie |
description | Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm−2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect‐engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Based on the defect engineering, ultrasonic cavitation was utilized to rapidly introduce different types of defects into a FeCoNi/FeAl2O4 coating to increase edge unsaturated active sites. Simultaneously, different defects synergistically enhance the oxygenophilicity character, allowing the coating to activate the surface reconstruction into highly active catalytic species at low potential. |
doi_str_mv | 10.1002/anie.202405372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046515664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046515664</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1962-3debbb0e16d2b8289fd3bef565828eabfca56dd3f08841263ec0f28db98821213</originalsourceid><addsrcrecordid>eNpdkT9PwzAQxS0EEqWwMltiYQn4T-K4bFVJKRJqKwRz5CSX1lVqFzsFsrGz8Bn5JLgqYmC6e9Lv3Z3uIXROyRUlhF0ro-GKERaThKfsAPVowmjE05Qfhj7mPEplQo_RiferwEtJRA99PqqNrvAt1FC2ODMLbQCcNgusDR7DyE719RiGDZvFeNIVLrC1dQFcKlNChWfv3QIMzl5ts221NXikWtV0XvsbPMRz1S7fVIdbiyd6sfz--JqDC_71zoyzJux0ttw7Wn-KjmrVeDj7rX30PM6eRpPoYXZ3Pxo-RBs6ECziFRRFQYCKihWSyUFd8QLqRCRBgCrqUiWiqnhNpIwpExxKUjNZFQMpGWWU99Hlfu7G2Zct-DZfa19C0ygDdutzTmKR0ESIOKAX_9CV3ToTrgtUGlPCafh2Hw321JtuoMs3Tq-V63JK8l0w-S6Y_C-YfDi9z_4U_wGrboWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074103105</pqid></control><display><type>article</type><title>Rapid Defect Engineering in FeCoNi/FeAl2O4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High‐Performance Electrocatalysts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yuhao ; Xu, Jiang ; Chen, Yujie ; Wang, Luqi ; Jiang, Shuyun ; Xie, Zong‐Han ; Zhang, Tianran ; Munroe, Paul ; Peng, Shengjie</creator><creatorcontrib>Chen, Yuhao ; Xu, Jiang ; Chen, Yujie ; Wang, Luqi ; Jiang, Shuyun ; Xie, Zong‐Han ; Zhang, Tianran ; Munroe, Paul ; Peng, Shengjie</creatorcontrib><description>Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm−2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect‐engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Based on the defect engineering, ultrasonic cavitation was utilized to rapidly introduce different types of defects into a FeCoNi/FeAl2O4 coating to increase edge unsaturated active sites. Simultaneously, different defects synergistically enhance the oxygenophilicity character, allowing the coating to activate the surface reconstruction into highly active catalytic species at low potential.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202405372</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalytic activity ; Cavitation ; defect engineering ; Electrocatalysts ; Harnesses ; hybrid coating ; Optimization ; Oxygen ; oxygen evolution reaction ; Oxygen evolution reactions ; Oxygen production ; Point defects ; Reconstruction ; Stacking faults ; surface reconstruction ; ultrasonic cavitation</subject><ispartof>Angewandte Chemie International Edition, 2024-07, Vol.63 (28), p.e202405372-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1591-1301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202405372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202405372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Yuhao</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><creatorcontrib>Chen, Yujie</creatorcontrib><creatorcontrib>Wang, Luqi</creatorcontrib><creatorcontrib>Jiang, Shuyun</creatorcontrib><creatorcontrib>Xie, Zong‐Han</creatorcontrib><creatorcontrib>Zhang, Tianran</creatorcontrib><creatorcontrib>Munroe, Paul</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><title>Rapid Defect Engineering in FeCoNi/FeAl2O4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High‐Performance Electrocatalysts</title><title>Angewandte Chemie International Edition</title><description>Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm−2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect‐engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Based on the defect engineering, ultrasonic cavitation was utilized to rapidly introduce different types of defects into a FeCoNi/FeAl2O4 coating to increase edge unsaturated active sites. Simultaneously, different defects synergistically enhance the oxygenophilicity character, allowing the coating to activate the surface reconstruction into highly active catalytic species at low potential.</description><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cavitation</subject><subject>defect engineering</subject><subject>Electrocatalysts</subject><subject>Harnesses</subject><subject>hybrid coating</subject><subject>Optimization</subject><subject>Oxygen</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen production</subject><subject>Point defects</subject><subject>Reconstruction</subject><subject>Stacking faults</subject><subject>surface reconstruction</subject><subject>ultrasonic cavitation</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkT9PwzAQxS0EEqWwMltiYQn4T-K4bFVJKRJqKwRz5CSX1lVqFzsFsrGz8Bn5JLgqYmC6e9Lv3Z3uIXROyRUlhF0ro-GKERaThKfsAPVowmjE05Qfhj7mPEplQo_RiferwEtJRA99PqqNrvAt1FC2ODMLbQCcNgusDR7DyE719RiGDZvFeNIVLrC1dQFcKlNChWfv3QIMzl5ts221NXikWtV0XvsbPMRz1S7fVIdbiyd6sfz--JqDC_71zoyzJux0ttw7Wn-KjmrVeDj7rX30PM6eRpPoYXZ3Pxo-RBs6ECziFRRFQYCKihWSyUFd8QLqRCRBgCrqUiWiqnhNpIwpExxKUjNZFQMpGWWU99Hlfu7G2Zct-DZfa19C0ygDdutzTmKR0ESIOKAX_9CV3ToTrgtUGlPCafh2Hw321JtuoMs3Tq-V63JK8l0w-S6Y_C-YfDi9z_4U_wGrboWo</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Chen, Yuhao</creator><creator>Xu, Jiang</creator><creator>Chen, Yujie</creator><creator>Wang, Luqi</creator><creator>Jiang, Shuyun</creator><creator>Xie, Zong‐Han</creator><creator>Zhang, Tianran</creator><creator>Munroe, Paul</creator><creator>Peng, Shengjie</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1591-1301</orcidid></search><sort><creationdate>20240708</creationdate><title>Rapid Defect Engineering in FeCoNi/FeAl2O4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High‐Performance Electrocatalysts</title><author>Chen, Yuhao ; Xu, Jiang ; Chen, Yujie ; Wang, Luqi ; Jiang, Shuyun ; Xie, Zong‐Han ; Zhang, Tianran ; Munroe, Paul ; Peng, Shengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1962-3debbb0e16d2b8289fd3bef565828eabfca56dd3f08841263ec0f28db98821213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cavitation</topic><topic>defect engineering</topic><topic>Electrocatalysts</topic><topic>Harnesses</topic><topic>hybrid coating</topic><topic>Optimization</topic><topic>Oxygen</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen production</topic><topic>Point defects</topic><topic>Reconstruction</topic><topic>Stacking faults</topic><topic>surface reconstruction</topic><topic>ultrasonic cavitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuhao</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><creatorcontrib>Chen, Yujie</creatorcontrib><creatorcontrib>Wang, Luqi</creatorcontrib><creatorcontrib>Jiang, Shuyun</creatorcontrib><creatorcontrib>Xie, Zong‐Han</creatorcontrib><creatorcontrib>Zhang, Tianran</creatorcontrib><creatorcontrib>Munroe, Paul</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuhao</au><au>Xu, Jiang</au><au>Chen, Yujie</au><au>Wang, Luqi</au><au>Jiang, Shuyun</au><au>Xie, Zong‐Han</au><au>Zhang, Tianran</au><au>Munroe, Paul</au><au>Peng, Shengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Defect Engineering in FeCoNi/FeAl2O4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High‐Performance Electrocatalysts</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-07-08</date><risdate>2024</risdate><volume>63</volume><issue>28</issue><spage>e202405372</spage><epage>n/a</epage><pages>e202405372-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm−2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect‐engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Based on the defect engineering, ultrasonic cavitation was utilized to rapidly introduce different types of defects into a FeCoNi/FeAl2O4 coating to increase edge unsaturated active sites. Simultaneously, different defects synergistically enhance the oxygenophilicity character, allowing the coating to activate the surface reconstruction into highly active catalytic species at low potential.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202405372</doi><tpages>13</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-1591-1301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-07, Vol.63 (28), p.e202405372-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3046515664 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Catalytic activity Cavitation defect engineering Electrocatalysts Harnesses hybrid coating Optimization Oxygen oxygen evolution reaction Oxygen evolution reactions Oxygen production Point defects Reconstruction Stacking faults surface reconstruction ultrasonic cavitation |
title | Rapid Defect Engineering in FeCoNi/FeAl2O4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High‐Performance Electrocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Defect%20Engineering%20in%20FeCoNi/FeAl2O4%20Hybrid%20for%20Enhanced%20Oxygen%20Evolution%20Catalysis:%20A%20Pathway%20to%20High%E2%80%90Performance%20Electrocatalysts&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chen,%20Yuhao&rft.date=2024-07-08&rft.volume=63&rft.issue=28&rft.spage=e202405372&rft.epage=n/a&rft.pages=e202405372-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202405372&rft_dat=%3Cproquest_wiley%3E3046515664%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074103105&rft_id=info:pmid/&rfr_iscdi=true |