Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study
Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk...
Gespeichert in:
Veröffentlicht in: | American journal of hematology 2024-07, Vol.99 (7), p.1230-1239 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1239 |
---|---|
container_issue | 7 |
container_start_page | 1230 |
container_title | American journal of hematology |
container_volume | 99 |
creator | Ma, Shengling La, Jennifer Swinnerton, Kaitlin N Guffey, Danielle Bandyo, Raka De Las Pozas, Giordana Hanzelka, Katy Xiao, Xiangjun Rojas-Hernandez, Cristhiam M Amos, Christopher I Chitalia, Vipul Ravid, Katya Merriman, Kelly W Flowers, Christopher R Fillmore, Nathanael Li, Ang |
description | Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients. |
doi_str_mv | 10.1002/ajh.27335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046513371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066298647</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-f0042258dd6fb118a3b69be1a3a9c58101ea1ef02d1954e5cea4293ceb6610213</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgaB8DPwBZImFgRSfnbgJW4X4kiqxwBw58VV1seNgO5Uq8eNJ-ViY7obnfaU7Qs6BTYExfqPWqymfCVHskQmwSmalLPg-mTAhYdxZdUSOY1wzBpCX7JAciRHkuYQJ-XxdBe8aH02kwcR32gfUpk3Gd9R01G5dv_JO0V4lg12Kt3RO3WCTyUwXk0nDTip7TQOm4GOPY3SD1HmNlmrcoPW9G4NUdZpulDVafXfHNOjtKTlYKhvx7HeekLeH-9e7p2zx8vh8N19kPRdVypaM5ZwXpdZy2QCUSjSyahCUUFVblMAAFeCScQ1VkWPRosp5JVpspATGQZyQq5_ePviPAWOqnYktWqs69EOsBctlAULMdvTyH137IYwX7pSUvCplPhvVxa8aGoe67oNxKmzrv7-KL_KRe1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066298647</pqid></control><display><type>article</type><title>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ma, Shengling ; La, Jennifer ; Swinnerton, Kaitlin N ; Guffey, Danielle ; Bandyo, Raka ; De Las Pozas, Giordana ; Hanzelka, Katy ; Xiao, Xiangjun ; Rojas-Hernandez, Cristhiam M ; Amos, Christopher I ; Chitalia, Vipul ; Ravid, Katya ; Merriman, Kelly W ; Flowers, Christopher R ; Fillmore, Nathanael ; Li, Ang</creator><creatorcontrib>Ma, Shengling ; La, Jennifer ; Swinnerton, Kaitlin N ; Guffey, Danielle ; Bandyo, Raka ; De Las Pozas, Giordana ; Hanzelka, Katy ; Xiao, Xiangjun ; Rojas-Hernandez, Cristhiam M ; Amos, Christopher I ; Chitalia, Vipul ; Ravid, Katya ; Merriman, Kelly W ; Flowers, Christopher R ; Fillmore, Nathanael ; Li, Ang</creatorcontrib><description>Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.</description><identifier>ISSN: 0361-8609</identifier><identifier>ISSN: 1096-8652</identifier><identifier>EISSN: 1096-8652</identifier><identifier>DOI: 10.1002/ajh.27335</identifier><identifier>PMID: 38654461</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Body mass index ; Cancer ; Embolism ; Female ; Humans ; Immobilization ; Incidence ; Lymphoma ; Lymphoma - complications ; Lymphoma - epidemiology ; Male ; Middle Aged ; Paralysis ; Patients ; Prediction models ; Pulmonary Embolism - epidemiology ; Pulmonary Embolism - etiology ; Retrospective Studies ; Risk Assessment ; Risk Factors ; Thromboembolism ; Thrombosis ; Venous Thromboembolism - epidemiology ; Venous Thromboembolism - etiology ; Venous Thrombosis - epidemiology ; Venous Thrombosis - etiology</subject><ispartof>American journal of hematology, 2024-07, Vol.99 (7), p.1230-1239</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8455-2309 ; 0000-0003-3890-3929 ; 0000-0002-8651-8892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38654461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Shengling</creatorcontrib><creatorcontrib>La, Jennifer</creatorcontrib><creatorcontrib>Swinnerton, Kaitlin N</creatorcontrib><creatorcontrib>Guffey, Danielle</creatorcontrib><creatorcontrib>Bandyo, Raka</creatorcontrib><creatorcontrib>De Las Pozas, Giordana</creatorcontrib><creatorcontrib>Hanzelka, Katy</creatorcontrib><creatorcontrib>Xiao, Xiangjun</creatorcontrib><creatorcontrib>Rojas-Hernandez, Cristhiam M</creatorcontrib><creatorcontrib>Amos, Christopher I</creatorcontrib><creatorcontrib>Chitalia, Vipul</creatorcontrib><creatorcontrib>Ravid, Katya</creatorcontrib><creatorcontrib>Merriman, Kelly W</creatorcontrib><creatorcontrib>Flowers, Christopher R</creatorcontrib><creatorcontrib>Fillmore, Nathanael</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><title>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</title><title>American journal of hematology</title><addtitle>Am J Hematol</addtitle><description>Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Body mass index</subject><subject>Cancer</subject><subject>Embolism</subject><subject>Female</subject><subject>Humans</subject><subject>Immobilization</subject><subject>Incidence</subject><subject>Lymphoma</subject><subject>Lymphoma - complications</subject><subject>Lymphoma - epidemiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Paralysis</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Pulmonary Embolism - epidemiology</subject><subject>Pulmonary Embolism - etiology</subject><subject>Retrospective Studies</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Venous Thromboembolism - epidemiology</subject><subject>Venous Thromboembolism - etiology</subject><subject>Venous Thrombosis - epidemiology</subject><subject>Venous Thrombosis - etiology</subject><issn>0361-8609</issn><issn>1096-8652</issn><issn>1096-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0D1PwzAQBmALgaB8DPwBZImFgRSfnbgJW4X4kiqxwBw58VV1seNgO5Uq8eNJ-ViY7obnfaU7Qs6BTYExfqPWqymfCVHskQmwSmalLPg-mTAhYdxZdUSOY1wzBpCX7JAciRHkuYQJ-XxdBe8aH02kwcR32gfUpk3Gd9R01G5dv_JO0V4lg12Kt3RO3WCTyUwXk0nDTip7TQOm4GOPY3SD1HmNlmrcoPW9G4NUdZpulDVafXfHNOjtKTlYKhvx7HeekLeH-9e7p2zx8vh8N19kPRdVypaM5ZwXpdZy2QCUSjSyahCUUFVblMAAFeCScQ1VkWPRosp5JVpspATGQZyQq5_ePviPAWOqnYktWqs69EOsBctlAULMdvTyH137IYwX7pSUvCplPhvVxa8aGoe67oNxKmzrv7-KL_KRe1M</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ma, Shengling</creator><creator>La, Jennifer</creator><creator>Swinnerton, Kaitlin N</creator><creator>Guffey, Danielle</creator><creator>Bandyo, Raka</creator><creator>De Las Pozas, Giordana</creator><creator>Hanzelka, Katy</creator><creator>Xiao, Xiangjun</creator><creator>Rojas-Hernandez, Cristhiam M</creator><creator>Amos, Christopher I</creator><creator>Chitalia, Vipul</creator><creator>Ravid, Katya</creator><creator>Merriman, Kelly W</creator><creator>Flowers, Christopher R</creator><creator>Fillmore, Nathanael</creator><creator>Li, Ang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8455-2309</orcidid><orcidid>https://orcid.org/0000-0003-3890-3929</orcidid><orcidid>https://orcid.org/0000-0002-8651-8892</orcidid></search><sort><creationdate>20240701</creationdate><title>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</title><author>Ma, Shengling ; La, Jennifer ; Swinnerton, Kaitlin N ; Guffey, Danielle ; Bandyo, Raka ; De Las Pozas, Giordana ; Hanzelka, Katy ; Xiao, Xiangjun ; Rojas-Hernandez, Cristhiam M ; Amos, Christopher I ; Chitalia, Vipul ; Ravid, Katya ; Merriman, Kelly W ; Flowers, Christopher R ; Fillmore, Nathanael ; Li, Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-f0042258dd6fb118a3b69be1a3a9c58101ea1ef02d1954e5cea4293ceb6610213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Body mass index</topic><topic>Cancer</topic><topic>Embolism</topic><topic>Female</topic><topic>Humans</topic><topic>Immobilization</topic><topic>Incidence</topic><topic>Lymphoma</topic><topic>Lymphoma - complications</topic><topic>Lymphoma - epidemiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Paralysis</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Pulmonary Embolism - epidemiology</topic><topic>Pulmonary Embolism - etiology</topic><topic>Retrospective Studies</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Venous Thromboembolism - epidemiology</topic><topic>Venous Thromboembolism - etiology</topic><topic>Venous Thrombosis - epidemiology</topic><topic>Venous Thrombosis - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shengling</creatorcontrib><creatorcontrib>La, Jennifer</creatorcontrib><creatorcontrib>Swinnerton, Kaitlin N</creatorcontrib><creatorcontrib>Guffey, Danielle</creatorcontrib><creatorcontrib>Bandyo, Raka</creatorcontrib><creatorcontrib>De Las Pozas, Giordana</creatorcontrib><creatorcontrib>Hanzelka, Katy</creatorcontrib><creatorcontrib>Xiao, Xiangjun</creatorcontrib><creatorcontrib>Rojas-Hernandez, Cristhiam M</creatorcontrib><creatorcontrib>Amos, Christopher I</creatorcontrib><creatorcontrib>Chitalia, Vipul</creatorcontrib><creatorcontrib>Ravid, Katya</creatorcontrib><creatorcontrib>Merriman, Kelly W</creatorcontrib><creatorcontrib>Flowers, Christopher R</creatorcontrib><creatorcontrib>Fillmore, Nathanael</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shengling</au><au>La, Jennifer</au><au>Swinnerton, Kaitlin N</au><au>Guffey, Danielle</au><au>Bandyo, Raka</au><au>De Las Pozas, Giordana</au><au>Hanzelka, Katy</au><au>Xiao, Xiangjun</au><au>Rojas-Hernandez, Cristhiam M</au><au>Amos, Christopher I</au><au>Chitalia, Vipul</au><au>Ravid, Katya</au><au>Merriman, Kelly W</au><au>Flowers, Christopher R</au><au>Fillmore, Nathanael</au><au>Li, Ang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</atitle><jtitle>American journal of hematology</jtitle><addtitle>Am J Hematol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>99</volume><issue>7</issue><spage>1230</spage><epage>1239</epage><pages>1230-1239</pages><issn>0361-8609</issn><issn>1096-8652</issn><eissn>1096-8652</eissn><abstract>Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38654461</pmid><doi>10.1002/ajh.27335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8455-2309</orcidid><orcidid>https://orcid.org/0000-0003-3890-3929</orcidid><orcidid>https://orcid.org/0000-0002-8651-8892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-8609 |
ispartof | American journal of hematology, 2024-07, Vol.99 (7), p.1230-1239 |
issn | 0361-8609 1096-8652 1096-8652 |
language | eng |
recordid | cdi_proquest_miscellaneous_3046513371 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adult Aged Aged, 80 and over Body mass index Cancer Embolism Female Humans Immobilization Incidence Lymphoma Lymphoma - complications Lymphoma - epidemiology Male Middle Aged Paralysis Patients Prediction models Pulmonary Embolism - epidemiology Pulmonary Embolism - etiology Retrospective Studies Risk Assessment Risk Factors Thromboembolism Thrombosis Venous Thromboembolism - epidemiology Venous Thromboembolism - etiology Venous Thrombosis - epidemiology Venous Thrombosis - etiology |
title | Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thrombosis%20risk%20prediction%20in%20lymphoma%20patients:%20A%20multi-institutional,%20retrospective%20model%20development%20and%20validation%20study&rft.jtitle=American%20journal%20of%20hematology&rft.au=Ma,%20Shengling&rft.date=2024-07-01&rft.volume=99&rft.issue=7&rft.spage=1230&rft.epage=1239&rft.pages=1230-1239&rft.issn=0361-8609&rft.eissn=1096-8652&rft_id=info:doi/10.1002/ajh.27335&rft_dat=%3Cproquest_pubme%3E3066298647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066298647&rft_id=info:pmid/38654461&rfr_iscdi=true |