Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study

Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of hematology 2024-07, Vol.99 (7), p.1230-1239
Hauptverfasser: Ma, Shengling, La, Jennifer, Swinnerton, Kaitlin N, Guffey, Danielle, Bandyo, Raka, De Las Pozas, Giordana, Hanzelka, Katy, Xiao, Xiangjun, Rojas-Hernandez, Cristhiam M, Amos, Christopher I, Chitalia, Vipul, Ravid, Katya, Merriman, Kelly W, Flowers, Christopher R, Fillmore, Nathanael, Li, Ang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1239
container_issue 7
container_start_page 1230
container_title American journal of hematology
container_volume 99
creator Ma, Shengling
La, Jennifer
Swinnerton, Kaitlin N
Guffey, Danielle
Bandyo, Raka
De Las Pozas, Giordana
Hanzelka, Katy
Xiao, Xiangjun
Rojas-Hernandez, Cristhiam M
Amos, Christopher I
Chitalia, Vipul
Ravid, Katya
Merriman, Kelly W
Flowers, Christopher R
Fillmore, Nathanael
Li, Ang
description Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.
doi_str_mv 10.1002/ajh.27335
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046513371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066298647</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-f0042258dd6fb118a3b69be1a3a9c58101ea1ef02d1954e5cea4293ceb6610213</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgaB8DPwBZImFgRSfnbgJW4X4kiqxwBw58VV1seNgO5Uq8eNJ-ViY7obnfaU7Qs6BTYExfqPWqymfCVHskQmwSmalLPg-mTAhYdxZdUSOY1wzBpCX7JAciRHkuYQJ-XxdBe8aH02kwcR32gfUpk3Gd9R01G5dv_JO0V4lg12Kt3RO3WCTyUwXk0nDTip7TQOm4GOPY3SD1HmNlmrcoPW9G4NUdZpulDVafXfHNOjtKTlYKhvx7HeekLeH-9e7p2zx8vh8N19kPRdVypaM5ZwXpdZy2QCUSjSyahCUUFVblMAAFeCScQ1VkWPRosp5JVpspATGQZyQq5_ePviPAWOqnYktWqs69EOsBctlAULMdvTyH137IYwX7pSUvCplPhvVxa8aGoe67oNxKmzrv7-KL_KRe1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066298647</pqid></control><display><type>article</type><title>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ma, Shengling ; La, Jennifer ; Swinnerton, Kaitlin N ; Guffey, Danielle ; Bandyo, Raka ; De Las Pozas, Giordana ; Hanzelka, Katy ; Xiao, Xiangjun ; Rojas-Hernandez, Cristhiam M ; Amos, Christopher I ; Chitalia, Vipul ; Ravid, Katya ; Merriman, Kelly W ; Flowers, Christopher R ; Fillmore, Nathanael ; Li, Ang</creator><creatorcontrib>Ma, Shengling ; La, Jennifer ; Swinnerton, Kaitlin N ; Guffey, Danielle ; Bandyo, Raka ; De Las Pozas, Giordana ; Hanzelka, Katy ; Xiao, Xiangjun ; Rojas-Hernandez, Cristhiam M ; Amos, Christopher I ; Chitalia, Vipul ; Ravid, Katya ; Merriman, Kelly W ; Flowers, Christopher R ; Fillmore, Nathanael ; Li, Ang</creatorcontrib><description>Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.</description><identifier>ISSN: 0361-8609</identifier><identifier>ISSN: 1096-8652</identifier><identifier>EISSN: 1096-8652</identifier><identifier>DOI: 10.1002/ajh.27335</identifier><identifier>PMID: 38654461</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Body mass index ; Cancer ; Embolism ; Female ; Humans ; Immobilization ; Incidence ; Lymphoma ; Lymphoma - complications ; Lymphoma - epidemiology ; Male ; Middle Aged ; Paralysis ; Patients ; Prediction models ; Pulmonary Embolism - epidemiology ; Pulmonary Embolism - etiology ; Retrospective Studies ; Risk Assessment ; Risk Factors ; Thromboembolism ; Thrombosis ; Venous Thromboembolism - epidemiology ; Venous Thromboembolism - etiology ; Venous Thrombosis - epidemiology ; Venous Thrombosis - etiology</subject><ispartof>American journal of hematology, 2024-07, Vol.99 (7), p.1230-1239</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8455-2309 ; 0000-0003-3890-3929 ; 0000-0002-8651-8892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38654461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Shengling</creatorcontrib><creatorcontrib>La, Jennifer</creatorcontrib><creatorcontrib>Swinnerton, Kaitlin N</creatorcontrib><creatorcontrib>Guffey, Danielle</creatorcontrib><creatorcontrib>Bandyo, Raka</creatorcontrib><creatorcontrib>De Las Pozas, Giordana</creatorcontrib><creatorcontrib>Hanzelka, Katy</creatorcontrib><creatorcontrib>Xiao, Xiangjun</creatorcontrib><creatorcontrib>Rojas-Hernandez, Cristhiam M</creatorcontrib><creatorcontrib>Amos, Christopher I</creatorcontrib><creatorcontrib>Chitalia, Vipul</creatorcontrib><creatorcontrib>Ravid, Katya</creatorcontrib><creatorcontrib>Merriman, Kelly W</creatorcontrib><creatorcontrib>Flowers, Christopher R</creatorcontrib><creatorcontrib>Fillmore, Nathanael</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><title>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</title><title>American journal of hematology</title><addtitle>Am J Hematol</addtitle><description>Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Body mass index</subject><subject>Cancer</subject><subject>Embolism</subject><subject>Female</subject><subject>Humans</subject><subject>Immobilization</subject><subject>Incidence</subject><subject>Lymphoma</subject><subject>Lymphoma - complications</subject><subject>Lymphoma - epidemiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Paralysis</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Pulmonary Embolism - epidemiology</subject><subject>Pulmonary Embolism - etiology</subject><subject>Retrospective Studies</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Venous Thromboembolism - epidemiology</subject><subject>Venous Thromboembolism - etiology</subject><subject>Venous Thrombosis - epidemiology</subject><subject>Venous Thrombosis - etiology</subject><issn>0361-8609</issn><issn>1096-8652</issn><issn>1096-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0D1PwzAQBmALgaB8DPwBZImFgRSfnbgJW4X4kiqxwBw58VV1seNgO5Uq8eNJ-ViY7obnfaU7Qs6BTYExfqPWqymfCVHskQmwSmalLPg-mTAhYdxZdUSOY1wzBpCX7JAciRHkuYQJ-XxdBe8aH02kwcR32gfUpk3Gd9R01G5dv_JO0V4lg12Kt3RO3WCTyUwXk0nDTip7TQOm4GOPY3SD1HmNlmrcoPW9G4NUdZpulDVafXfHNOjtKTlYKhvx7HeekLeH-9e7p2zx8vh8N19kPRdVypaM5ZwXpdZy2QCUSjSyahCUUFVblMAAFeCScQ1VkWPRosp5JVpspATGQZyQq5_ePviPAWOqnYktWqs69EOsBctlAULMdvTyH137IYwX7pSUvCplPhvVxa8aGoe67oNxKmzrv7-KL_KRe1M</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ma, Shengling</creator><creator>La, Jennifer</creator><creator>Swinnerton, Kaitlin N</creator><creator>Guffey, Danielle</creator><creator>Bandyo, Raka</creator><creator>De Las Pozas, Giordana</creator><creator>Hanzelka, Katy</creator><creator>Xiao, Xiangjun</creator><creator>Rojas-Hernandez, Cristhiam M</creator><creator>Amos, Christopher I</creator><creator>Chitalia, Vipul</creator><creator>Ravid, Katya</creator><creator>Merriman, Kelly W</creator><creator>Flowers, Christopher R</creator><creator>Fillmore, Nathanael</creator><creator>Li, Ang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8455-2309</orcidid><orcidid>https://orcid.org/0000-0003-3890-3929</orcidid><orcidid>https://orcid.org/0000-0002-8651-8892</orcidid></search><sort><creationdate>20240701</creationdate><title>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</title><author>Ma, Shengling ; La, Jennifer ; Swinnerton, Kaitlin N ; Guffey, Danielle ; Bandyo, Raka ; De Las Pozas, Giordana ; Hanzelka, Katy ; Xiao, Xiangjun ; Rojas-Hernandez, Cristhiam M ; Amos, Christopher I ; Chitalia, Vipul ; Ravid, Katya ; Merriman, Kelly W ; Flowers, Christopher R ; Fillmore, Nathanael ; Li, Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-f0042258dd6fb118a3b69be1a3a9c58101ea1ef02d1954e5cea4293ceb6610213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Body mass index</topic><topic>Cancer</topic><topic>Embolism</topic><topic>Female</topic><topic>Humans</topic><topic>Immobilization</topic><topic>Incidence</topic><topic>Lymphoma</topic><topic>Lymphoma - complications</topic><topic>Lymphoma - epidemiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Paralysis</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Pulmonary Embolism - epidemiology</topic><topic>Pulmonary Embolism - etiology</topic><topic>Retrospective Studies</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Venous Thromboembolism - epidemiology</topic><topic>Venous Thromboembolism - etiology</topic><topic>Venous Thrombosis - epidemiology</topic><topic>Venous Thrombosis - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shengling</creatorcontrib><creatorcontrib>La, Jennifer</creatorcontrib><creatorcontrib>Swinnerton, Kaitlin N</creatorcontrib><creatorcontrib>Guffey, Danielle</creatorcontrib><creatorcontrib>Bandyo, Raka</creatorcontrib><creatorcontrib>De Las Pozas, Giordana</creatorcontrib><creatorcontrib>Hanzelka, Katy</creatorcontrib><creatorcontrib>Xiao, Xiangjun</creatorcontrib><creatorcontrib>Rojas-Hernandez, Cristhiam M</creatorcontrib><creatorcontrib>Amos, Christopher I</creatorcontrib><creatorcontrib>Chitalia, Vipul</creatorcontrib><creatorcontrib>Ravid, Katya</creatorcontrib><creatorcontrib>Merriman, Kelly W</creatorcontrib><creatorcontrib>Flowers, Christopher R</creatorcontrib><creatorcontrib>Fillmore, Nathanael</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shengling</au><au>La, Jennifer</au><au>Swinnerton, Kaitlin N</au><au>Guffey, Danielle</au><au>Bandyo, Raka</au><au>De Las Pozas, Giordana</au><au>Hanzelka, Katy</au><au>Xiao, Xiangjun</au><au>Rojas-Hernandez, Cristhiam M</au><au>Amos, Christopher I</au><au>Chitalia, Vipul</au><au>Ravid, Katya</au><au>Merriman, Kelly W</au><au>Flowers, Christopher R</au><au>Fillmore, Nathanael</au><au>Li, Ang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study</atitle><jtitle>American journal of hematology</jtitle><addtitle>Am J Hematol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>99</volume><issue>7</issue><spage>1230</spage><epage>1239</epage><pages>1230-1239</pages><issn>0361-8609</issn><issn>1096-8652</issn><eissn>1096-8652</eissn><abstract>Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38654461</pmid><doi>10.1002/ajh.27335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8455-2309</orcidid><orcidid>https://orcid.org/0000-0003-3890-3929</orcidid><orcidid>https://orcid.org/0000-0002-8651-8892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-8609
ispartof American journal of hematology, 2024-07, Vol.99 (7), p.1230-1239
issn 0361-8609
1096-8652
1096-8652
language eng
recordid cdi_proquest_miscellaneous_3046513371
source MEDLINE; Access via Wiley Online Library
subjects Adult
Aged
Aged, 80 and over
Body mass index
Cancer
Embolism
Female
Humans
Immobilization
Incidence
Lymphoma
Lymphoma - complications
Lymphoma - epidemiology
Male
Middle Aged
Paralysis
Patients
Prediction models
Pulmonary Embolism - epidemiology
Pulmonary Embolism - etiology
Retrospective Studies
Risk Assessment
Risk Factors
Thromboembolism
Thrombosis
Venous Thromboembolism - epidemiology
Venous Thromboembolism - etiology
Venous Thrombosis - epidemiology
Venous Thrombosis - etiology
title Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thrombosis%20risk%20prediction%20in%20lymphoma%20patients:%20A%20multi-institutional,%20retrospective%20model%20development%20and%20validation%20study&rft.jtitle=American%20journal%20of%20hematology&rft.au=Ma,%20Shengling&rft.date=2024-07-01&rft.volume=99&rft.issue=7&rft.spage=1230&rft.epage=1239&rft.pages=1230-1239&rft.issn=0361-8609&rft.eissn=1096-8652&rft_id=info:doi/10.1002/ajh.27335&rft_dat=%3Cproquest_pubme%3E3066298647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066298647&rft_id=info:pmid/38654461&rfr_iscdi=true