High-performance fibre battery with polymer gel electrolyte

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries 1 – 6 . However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-05, Vol.629 (8010), p.86-91
Hauptverfasser: Lu, Chenhao, Jiang, Haibo, Cheng, Xiangran, He, Jiqing, Long, Yao, Chang, Yingfan, Gong, Xiaocheng, Zhang, Kun, Li, Jiaxin, Zhu, Zhengfeng, Wu, Jingxia, Wang, Jiajia, Zheng, Yuanyuan, Shi, Xiang, Ye, Lei, Liao, Meng, Sun, Xuemei, Wang, Bingjie, Chen, Peining, Wang, Yonggang, Peng, Huisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 8010
container_start_page 86
container_title Nature (London)
container_volume 629
creator Lu, Chenhao
Jiang, Haibo
Cheng, Xiangran
He, Jiqing
Long, Yao
Chang, Yingfan
Gong, Xiaocheng
Zhang, Kun
Li, Jiaxin
Zhu, Zhengfeng
Wu, Jingxia
Wang, Jiajia
Zheng, Yuanyuan
Shi, Xiang
Ye, Lei
Liao, Meng
Sun, Xuemei
Wang, Bingjie
Chen, Peining
Wang, Yonggang
Peng, Huisheng
description Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries 1 – 6 . However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery 7 – 9 . Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg −1 ). This strategy also enabled the production of FLBs with a high rate of 3,600 m h −1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration. A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.
doi_str_mv 10.1038/s41586-024-07343-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046512397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046512397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlOtkkmyyepKgVBC96Dvsxabfsl8kutv_erVsVPHgamHnmneEh5JzBNQOub7xgUkcUQkFBccHp5oBMmVARFZFWh2QKEGoKmkcTcuL9GgAkU-KYTLiOpFYRn5LbRbFc0RadbVyV1BkGtkgdBmnSdei2wUfRrYK2KbcVumCJZYAlZp0bGh2ekiOblB7P9nVG3h7uX-cL-vzy-DS_e6YZV7KjOk0tCMUVs1aEeZ5LIWOmU8ZElgKwGFiS8YyJHJW1mqtQhJFNFMZCK5UqPiNXY27rmvcefWeqwmdYlkmNTe8NBxFJFvJ4h17-QddN7-rhu4GSDGQsNR-ocKQy13jv0JrWFVXitoaB2ak1o1ozqDVfas1mWLrYR_dphfnPyrfLAeAj4IdRvUT3e_uf2E-9mINs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051059583</pqid></control><display><type>article</type><title>High-performance fibre battery with polymer gel electrolyte</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Chenhao ; Jiang, Haibo ; Cheng, Xiangran ; He, Jiqing ; Long, Yao ; Chang, Yingfan ; Gong, Xiaocheng ; Zhang, Kun ; Li, Jiaxin ; Zhu, Zhengfeng ; Wu, Jingxia ; Wang, Jiajia ; Zheng, Yuanyuan ; Shi, Xiang ; Ye, Lei ; Liao, Meng ; Sun, Xuemei ; Wang, Bingjie ; Chen, Peining ; Wang, Yonggang ; Peng, Huisheng</creator><creatorcontrib>Lu, Chenhao ; Jiang, Haibo ; Cheng, Xiangran ; He, Jiqing ; Long, Yao ; Chang, Yingfan ; Gong, Xiaocheng ; Zhang, Kun ; Li, Jiaxin ; Zhu, Zhengfeng ; Wu, Jingxia ; Wang, Jiajia ; Zheng, Yuanyuan ; Shi, Xiang ; Ye, Lei ; Liao, Meng ; Sun, Xuemei ; Wang, Bingjie ; Chen, Peining ; Wang, Yonggang ; Peng, Huisheng</creatorcontrib><description>Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries 1 – 6 . However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery 7 – 9 . Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg −1 ). This strategy also enabled the production of FLBs with a high rate of 3,600 m h −1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration. A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07343-x</identifier><identifier>PMID: 38658763</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/166 ; 639/638 ; Channels ; Electric Power Supplies ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrolytes ; Electrolytes - chemistry ; Energy ; Fire fighting ; Gels - chemistry ; Humanities and Social Sciences ; Interfaces ; Lithium ; Lithium - chemistry ; Lithium-ion batteries ; Monomers ; multidisciplinary ; Polymer gels ; Polymers ; Polymers - chemistry ; Rechargeable batteries ; Science ; Science (multidisciplinary) ; Space exploration ; Textiles ; Wearable Electronic Devices ; Wearable technology</subject><ispartof>Nature (London), 2024-05, Vol.629 (8010), p.86-91</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 2, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</citedby><cites>FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</cites><orcidid>0000-0002-2142-2945 ; 0000-0002-2447-4679 ; 0000-0002-0305-6267 ; 0000-0003-0566-1660 ; 0000-0002-2583-8593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07343-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07343-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38658763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Cheng, Xiangran</creatorcontrib><creatorcontrib>He, Jiqing</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Zhu, Zhengfeng</creatorcontrib><creatorcontrib>Wu, Jingxia</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Shi, Xiang</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><creatorcontrib>Chen, Peining</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>High-performance fibre battery with polymer gel electrolyte</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries 1 – 6 . However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery 7 – 9 . Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg −1 ). This strategy also enabled the production of FLBs with a high rate of 3,600 m h −1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration. A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.</description><subject>140/133</subject><subject>639/166</subject><subject>639/638</subject><subject>Channels</subject><subject>Electric Power Supplies</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytes - chemistry</subject><subject>Energy</subject><subject>Fire fighting</subject><subject>Gels - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Lithium</subject><subject>Lithium - chemistry</subject><subject>Lithium-ion batteries</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Polymer gels</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Rechargeable batteries</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Space exploration</subject><subject>Textiles</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlOtkkmyyepKgVBC96Dvsxabfsl8kutv_erVsVPHgamHnmneEh5JzBNQOub7xgUkcUQkFBccHp5oBMmVARFZFWh2QKEGoKmkcTcuL9GgAkU-KYTLiOpFYRn5LbRbFc0RadbVyV1BkGtkgdBmnSdei2wUfRrYK2KbcVumCJZYAlZp0bGh2ekiOblB7P9nVG3h7uX-cL-vzy-DS_e6YZV7KjOk0tCMUVs1aEeZ5LIWOmU8ZElgKwGFiS8YyJHJW1mqtQhJFNFMZCK5UqPiNXY27rmvcefWeqwmdYlkmNTe8NBxFJFvJ4h17-QddN7-rhu4GSDGQsNR-ocKQy13jv0JrWFVXitoaB2ak1o1ozqDVfas1mWLrYR_dphfnPyrfLAeAj4IdRvUT3e_uf2E-9mINs</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Lu, Chenhao</creator><creator>Jiang, Haibo</creator><creator>Cheng, Xiangran</creator><creator>He, Jiqing</creator><creator>Long, Yao</creator><creator>Chang, Yingfan</creator><creator>Gong, Xiaocheng</creator><creator>Zhang, Kun</creator><creator>Li, Jiaxin</creator><creator>Zhu, Zhengfeng</creator><creator>Wu, Jingxia</creator><creator>Wang, Jiajia</creator><creator>Zheng, Yuanyuan</creator><creator>Shi, Xiang</creator><creator>Ye, Lei</creator><creator>Liao, Meng</creator><creator>Sun, Xuemei</creator><creator>Wang, Bingjie</creator><creator>Chen, Peining</creator><creator>Wang, Yonggang</creator><creator>Peng, Huisheng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid><orcidid>https://orcid.org/0000-0002-2447-4679</orcidid><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid><orcidid>https://orcid.org/0000-0003-0566-1660</orcidid><orcidid>https://orcid.org/0000-0002-2583-8593</orcidid></search><sort><creationdate>20240502</creationdate><title>High-performance fibre battery with polymer gel electrolyte</title><author>Lu, Chenhao ; Jiang, Haibo ; Cheng, Xiangran ; He, Jiqing ; Long, Yao ; Chang, Yingfan ; Gong, Xiaocheng ; Zhang, Kun ; Li, Jiaxin ; Zhu, Zhengfeng ; Wu, Jingxia ; Wang, Jiajia ; Zheng, Yuanyuan ; Shi, Xiang ; Ye, Lei ; Liao, Meng ; Sun, Xuemei ; Wang, Bingjie ; Chen, Peining ; Wang, Yonggang ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/133</topic><topic>639/166</topic><topic>639/638</topic><topic>Channels</topic><topic>Electric Power Supplies</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytes - chemistry</topic><topic>Energy</topic><topic>Fire fighting</topic><topic>Gels - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Lithium</topic><topic>Lithium - chemistry</topic><topic>Lithium-ion batteries</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Polymer gels</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Rechargeable batteries</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Space exploration</topic><topic>Textiles</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Cheng, Xiangran</creatorcontrib><creatorcontrib>He, Jiqing</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Zhu, Zhengfeng</creatorcontrib><creatorcontrib>Wu, Jingxia</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Shi, Xiang</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><creatorcontrib>Chen, Peining</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chenhao</au><au>Jiang, Haibo</au><au>Cheng, Xiangran</au><au>He, Jiqing</au><au>Long, Yao</au><au>Chang, Yingfan</au><au>Gong, Xiaocheng</au><au>Zhang, Kun</au><au>Li, Jiaxin</au><au>Zhu, Zhengfeng</au><au>Wu, Jingxia</au><au>Wang, Jiajia</au><au>Zheng, Yuanyuan</au><au>Shi, Xiang</au><au>Ye, Lei</au><au>Liao, Meng</au><au>Sun, Xuemei</au><au>Wang, Bingjie</au><au>Chen, Peining</au><au>Wang, Yonggang</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance fibre battery with polymer gel electrolyte</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>629</volume><issue>8010</issue><spage>86</spage><epage>91</epage><pages>86-91</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries 1 – 6 . However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery 7 – 9 . Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg −1 ). This strategy also enabled the production of FLBs with a high rate of 3,600 m h −1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration. A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38658763</pmid><doi>10.1038/s41586-024-07343-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid><orcidid>https://orcid.org/0000-0002-2447-4679</orcidid><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid><orcidid>https://orcid.org/0000-0003-0566-1660</orcidid><orcidid>https://orcid.org/0000-0002-2583-8593</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-05, Vol.629 (8010), p.86-91
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3046512397
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/133
639/166
639/638
Channels
Electric Power Supplies
Electrochemical analysis
Electrochemistry
Electrodes
Electrolytes
Electrolytes - chemistry
Energy
Fire fighting
Gels - chemistry
Humanities and Social Sciences
Interfaces
Lithium
Lithium - chemistry
Lithium-ion batteries
Monomers
multidisciplinary
Polymer gels
Polymers
Polymers - chemistry
Rechargeable batteries
Science
Science (multidisciplinary)
Space exploration
Textiles
Wearable Electronic Devices
Wearable technology
title High-performance fibre battery with polymer gel electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20fibre%20battery%20with%20polymer%20gel%20electrolyte&rft.jtitle=Nature%20(London)&rft.au=Lu,%20Chenhao&rft.date=2024-05-02&rft.volume=629&rft.issue=8010&rft.spage=86&rft.epage=91&rft.pages=86-91&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07343-x&rft_dat=%3Cproquest_cross%3E3046512397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051059583&rft_id=info:pmid/38658763&rfr_iscdi=true