High-performance fibre battery with polymer gel electrolyte
Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries 1 – 6 . However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wett...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-05, Vol.629 (8010), p.86-91 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 8010 |
container_start_page | 86 |
container_title | Nature (London) |
container_volume | 629 |
creator | Lu, Chenhao Jiang, Haibo Cheng, Xiangran He, Jiqing Long, Yao Chang, Yingfan Gong, Xiaocheng Zhang, Kun Li, Jiaxin Zhu, Zhengfeng Wu, Jingxia Wang, Jiajia Zheng, Yuanyuan Shi, Xiang Ye, Lei Liao, Meng Sun, Xuemei Wang, Bingjie Chen, Peining Wang, Yonggang Peng, Huisheng |
description | Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries
1
–
6
. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery
7
–
9
. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg
−1
). This strategy also enabled the production of FLBs with a high rate of 3,600 m h
−1
per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.
A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes. |
doi_str_mv | 10.1038/s41586-024-07343-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046512397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046512397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlOtkkmyyepKgVBC96Dvsxabfsl8kutv_erVsVPHgamHnmneEh5JzBNQOub7xgUkcUQkFBccHp5oBMmVARFZFWh2QKEGoKmkcTcuL9GgAkU-KYTLiOpFYRn5LbRbFc0RadbVyV1BkGtkgdBmnSdei2wUfRrYK2KbcVumCJZYAlZp0bGh2ekiOblB7P9nVG3h7uX-cL-vzy-DS_e6YZV7KjOk0tCMUVs1aEeZ5LIWOmU8ZElgKwGFiS8YyJHJW1mqtQhJFNFMZCK5UqPiNXY27rmvcefWeqwmdYlkmNTe8NBxFJFvJ4h17-QddN7-rhu4GSDGQsNR-ocKQy13jv0JrWFVXitoaB2ak1o1ozqDVfas1mWLrYR_dphfnPyrfLAeAj4IdRvUT3e_uf2E-9mINs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051059583</pqid></control><display><type>article</type><title>High-performance fibre battery with polymer gel electrolyte</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Chenhao ; Jiang, Haibo ; Cheng, Xiangran ; He, Jiqing ; Long, Yao ; Chang, Yingfan ; Gong, Xiaocheng ; Zhang, Kun ; Li, Jiaxin ; Zhu, Zhengfeng ; Wu, Jingxia ; Wang, Jiajia ; Zheng, Yuanyuan ; Shi, Xiang ; Ye, Lei ; Liao, Meng ; Sun, Xuemei ; Wang, Bingjie ; Chen, Peining ; Wang, Yonggang ; Peng, Huisheng</creator><creatorcontrib>Lu, Chenhao ; Jiang, Haibo ; Cheng, Xiangran ; He, Jiqing ; Long, Yao ; Chang, Yingfan ; Gong, Xiaocheng ; Zhang, Kun ; Li, Jiaxin ; Zhu, Zhengfeng ; Wu, Jingxia ; Wang, Jiajia ; Zheng, Yuanyuan ; Shi, Xiang ; Ye, Lei ; Liao, Meng ; Sun, Xuemei ; Wang, Bingjie ; Chen, Peining ; Wang, Yonggang ; Peng, Huisheng</creatorcontrib><description>Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries
1
–
6
. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery
7
–
9
. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg
−1
). This strategy also enabled the production of FLBs with a high rate of 3,600 m h
−1
per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.
A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07343-x</identifier><identifier>PMID: 38658763</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/166 ; 639/638 ; Channels ; Electric Power Supplies ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrolytes ; Electrolytes - chemistry ; Energy ; Fire fighting ; Gels - chemistry ; Humanities and Social Sciences ; Interfaces ; Lithium ; Lithium - chemistry ; Lithium-ion batteries ; Monomers ; multidisciplinary ; Polymer gels ; Polymers ; Polymers - chemistry ; Rechargeable batteries ; Science ; Science (multidisciplinary) ; Space exploration ; Textiles ; Wearable Electronic Devices ; Wearable technology</subject><ispartof>Nature (London), 2024-05, Vol.629 (8010), p.86-91</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 2, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</citedby><cites>FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</cites><orcidid>0000-0002-2142-2945 ; 0000-0002-2447-4679 ; 0000-0002-0305-6267 ; 0000-0003-0566-1660 ; 0000-0002-2583-8593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07343-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07343-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38658763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Cheng, Xiangran</creatorcontrib><creatorcontrib>He, Jiqing</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Zhu, Zhengfeng</creatorcontrib><creatorcontrib>Wu, Jingxia</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Shi, Xiang</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><creatorcontrib>Chen, Peining</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>High-performance fibre battery with polymer gel electrolyte</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries
1
–
6
. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery
7
–
9
. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg
−1
). This strategy also enabled the production of FLBs with a high rate of 3,600 m h
−1
per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.
A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.</description><subject>140/133</subject><subject>639/166</subject><subject>639/638</subject><subject>Channels</subject><subject>Electric Power Supplies</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytes - chemistry</subject><subject>Energy</subject><subject>Fire fighting</subject><subject>Gels - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Lithium</subject><subject>Lithium - chemistry</subject><subject>Lithium-ion batteries</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Polymer gels</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Rechargeable batteries</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Space exploration</subject><subject>Textiles</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlOtkkmyyepKgVBC96Dvsxabfsl8kutv_erVsVPHgamHnmneEh5JzBNQOub7xgUkcUQkFBccHp5oBMmVARFZFWh2QKEGoKmkcTcuL9GgAkU-KYTLiOpFYRn5LbRbFc0RadbVyV1BkGtkgdBmnSdei2wUfRrYK2KbcVumCJZYAlZp0bGh2ekiOblB7P9nVG3h7uX-cL-vzy-DS_e6YZV7KjOk0tCMUVs1aEeZ5LIWOmU8ZElgKwGFiS8YyJHJW1mqtQhJFNFMZCK5UqPiNXY27rmvcefWeqwmdYlkmNTe8NBxFJFvJ4h17-QddN7-rhu4GSDGQsNR-ocKQy13jv0JrWFVXitoaB2ak1o1ozqDVfas1mWLrYR_dphfnPyrfLAeAj4IdRvUT3e_uf2E-9mINs</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Lu, Chenhao</creator><creator>Jiang, Haibo</creator><creator>Cheng, Xiangran</creator><creator>He, Jiqing</creator><creator>Long, Yao</creator><creator>Chang, Yingfan</creator><creator>Gong, Xiaocheng</creator><creator>Zhang, Kun</creator><creator>Li, Jiaxin</creator><creator>Zhu, Zhengfeng</creator><creator>Wu, Jingxia</creator><creator>Wang, Jiajia</creator><creator>Zheng, Yuanyuan</creator><creator>Shi, Xiang</creator><creator>Ye, Lei</creator><creator>Liao, Meng</creator><creator>Sun, Xuemei</creator><creator>Wang, Bingjie</creator><creator>Chen, Peining</creator><creator>Wang, Yonggang</creator><creator>Peng, Huisheng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid><orcidid>https://orcid.org/0000-0002-2447-4679</orcidid><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid><orcidid>https://orcid.org/0000-0003-0566-1660</orcidid><orcidid>https://orcid.org/0000-0002-2583-8593</orcidid></search><sort><creationdate>20240502</creationdate><title>High-performance fibre battery with polymer gel electrolyte</title><author>Lu, Chenhao ; Jiang, Haibo ; Cheng, Xiangran ; He, Jiqing ; Long, Yao ; Chang, Yingfan ; Gong, Xiaocheng ; Zhang, Kun ; Li, Jiaxin ; Zhu, Zhengfeng ; Wu, Jingxia ; Wang, Jiajia ; Zheng, Yuanyuan ; Shi, Xiang ; Ye, Lei ; Liao, Meng ; Sun, Xuemei ; Wang, Bingjie ; Chen, Peining ; Wang, Yonggang ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8bbf047371ff42ddd545918b114cb001901ac3c14de7ff8372426fa7e94877b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/133</topic><topic>639/166</topic><topic>639/638</topic><topic>Channels</topic><topic>Electric Power Supplies</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytes - chemistry</topic><topic>Energy</topic><topic>Fire fighting</topic><topic>Gels - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Lithium</topic><topic>Lithium - chemistry</topic><topic>Lithium-ion batteries</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Polymer gels</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Rechargeable batteries</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Space exploration</topic><topic>Textiles</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Cheng, Xiangran</creatorcontrib><creatorcontrib>He, Jiqing</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Zhu, Zhengfeng</creatorcontrib><creatorcontrib>Wu, Jingxia</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Shi, Xiang</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><creatorcontrib>Chen, Peining</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chenhao</au><au>Jiang, Haibo</au><au>Cheng, Xiangran</au><au>He, Jiqing</au><au>Long, Yao</au><au>Chang, Yingfan</au><au>Gong, Xiaocheng</au><au>Zhang, Kun</au><au>Li, Jiaxin</au><au>Zhu, Zhengfeng</au><au>Wu, Jingxia</au><au>Wang, Jiajia</au><au>Zheng, Yuanyuan</au><au>Shi, Xiang</au><au>Ye, Lei</au><au>Liao, Meng</au><au>Sun, Xuemei</au><au>Wang, Bingjie</au><au>Chen, Peining</au><au>Wang, Yonggang</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance fibre battery with polymer gel electrolyte</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>629</volume><issue>8010</issue><spage>86</spage><epage>91</epage><pages>86-91</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries
1
–
6
. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery
7
–
9
. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg
−1
). This strategy also enabled the production of FLBs with a high rate of 3,600 m h
−1
per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of −40 °C and 80 °C and a vacuum of −0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.
A fibre lithium-ion battery that can potentially be woven into textiles shows enhanced battery performance and safety compared with liquid electrolytes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38658763</pmid><doi>10.1038/s41586-024-07343-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid><orcidid>https://orcid.org/0000-0002-2447-4679</orcidid><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid><orcidid>https://orcid.org/0000-0003-0566-1660</orcidid><orcidid>https://orcid.org/0000-0002-2583-8593</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-05, Vol.629 (8010), p.86-91 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3046512397 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/133 639/166 639/638 Channels Electric Power Supplies Electrochemical analysis Electrochemistry Electrodes Electrolytes Electrolytes - chemistry Energy Fire fighting Gels - chemistry Humanities and Social Sciences Interfaces Lithium Lithium - chemistry Lithium-ion batteries Monomers multidisciplinary Polymer gels Polymers Polymers - chemistry Rechargeable batteries Science Science (multidisciplinary) Space exploration Textiles Wearable Electronic Devices Wearable technology |
title | High-performance fibre battery with polymer gel electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20fibre%20battery%20with%20polymer%20gel%20electrolyte&rft.jtitle=Nature%20(London)&rft.au=Lu,%20Chenhao&rft.date=2024-05-02&rft.volume=629&rft.issue=8010&rft.spage=86&rft.epage=91&rft.pages=86-91&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07343-x&rft_dat=%3Cproquest_cross%3E3046512397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051059583&rft_id=info:pmid/38658763&rfr_iscdi=true |