Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition
Background Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the ste...
Gespeichert in:
Veröffentlicht in: | Molecular biology reports 2024-12, Vol.51 (1), p.567-567, Article 567 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 1 |
container_start_page | 567 |
container_title | Molecular biology reports |
container_volume | 51 |
creator | Shirian, Farzad Izak Karimi, Milad Alipour, Maryam Salami, Siamak Nourbakhsh, Mitra Nekufar, Samira Safari-Alighiarloo, Nahid Tavakoli-Yaraki, Masoumeh |
description | Background
Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells.
Methods and results
A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings.
Conclusion
The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels. |
doi_str_mv | 10.1007/s11033-024-09501-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3046512053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046660262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-94869b3c196448f71fb0a1319589d273e5b39bbf97d6ac275d517afae73509113</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIpPAD7BAltiwSIPdfrWXEPGSIrGBteW2q2ccdduD7U4yP8E342QCSCxYleQ6daqsi9ALSt5QQtTbQilhrCM974gWhHY3j9CGCsU6rtXwGG0Ia498EPQEnZZyRQjhVImn6IQNUkim-Qb9fA_V4t3B53R7GNd6yLYCDtGvDgqe17jFzkYHGTuYZ-zB1t05XkJNbpeiz8HOOCx7G_ICsWIbPU63wdsargGXmqGUZsMWz6mpKuQFb-fVpQJd69UcXAWPXVOFGlJ8hp5Mdi7w_KGeoe8fP3y7-Nxdfv305eLdZedYL2un-SD1yBzVkvNhUnQaiaWMajFo3ysGYmR6HCetvLSuV8ILquxkQTFBNKXsDL0-evc5_VjbIWYJ5e6HNkJai2GES0F7IlhDX_2DXqU1x3bdPSUl6WXfqP5IuZxKyTCZfQ6LzQdDiblLyxzTMi0tc5-WuWlDLx_U67iA_zPyO54GsCNQWituIf_d_R_tL4s7onI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046660262</pqid></control><display><type>article</type><title>Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Shirian, Farzad Izak ; Karimi, Milad ; Alipour, Maryam ; Salami, Siamak ; Nourbakhsh, Mitra ; Nekufar, Samira ; Safari-Alighiarloo, Nahid ; Tavakoli-Yaraki, Masoumeh</creator><creatorcontrib>Shirian, Farzad Izak ; Karimi, Milad ; Alipour, Maryam ; Salami, Siamak ; Nourbakhsh, Mitra ; Nekufar, Samira ; Safari-Alighiarloo, Nahid ; Tavakoli-Yaraki, Masoumeh</creatorcontrib><description>Background
Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells.
Methods and results
A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings.
Conclusion
The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-024-09501-w</identifier><identifier>PMID: 38656394</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>3-Hydroxybutyric Acid - pharmacology ; A549 Cells ; AC133 Antigen - genetics ; AC133 Antigen - metabolism ; Animal Anatomy ; Animal Biochemistry ; Apoptosis ; Apoptosis - drug effects ; Biomedical and Life Sciences ; CD44 antigen ; Cell death ; Cell Death - drug effects ; Cell growth ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell survival ; Cell Survival - drug effects ; Colorimetry ; Flow cytometry ; Glucose ; Glucose - metabolism ; Glutathione peroxidase ; Histology ; Humans ; Life Sciences ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Morphology ; Original Article ; Oxidative stress ; Oxidative Stress - drug effects ; Plasticity ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; β-Catenin</subject><ispartof>Molecular biology reports, 2024-12, Vol.51 (1), p.567-567, Article 567</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-94869b3c196448f71fb0a1319589d273e5b39bbf97d6ac275d517afae73509113</cites><orcidid>0000-0003-4449-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-024-09501-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-024-09501-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38656394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirian, Farzad Izak</creatorcontrib><creatorcontrib>Karimi, Milad</creatorcontrib><creatorcontrib>Alipour, Maryam</creatorcontrib><creatorcontrib>Salami, Siamak</creatorcontrib><creatorcontrib>Nourbakhsh, Mitra</creatorcontrib><creatorcontrib>Nekufar, Samira</creatorcontrib><creatorcontrib>Safari-Alighiarloo, Nahid</creatorcontrib><creatorcontrib>Tavakoli-Yaraki, Masoumeh</creatorcontrib><title>Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>Background
Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells.
Methods and results
A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings.
Conclusion
The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.</description><subject>3-Hydroxybutyric Acid - pharmacology</subject><subject>A549 Cells</subject><subject>AC133 Antigen - genetics</subject><subject>AC133 Antigen - metabolism</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>CD44 antigen</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell survival</subject><subject>Cell Survival - drug effects</subject><subject>Colorimetry</subject><subject>Flow cytometry</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glutathione peroxidase</subject><subject>Histology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Plasticity</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>β-Catenin</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIpPAD7BAltiwSIPdfrWXEPGSIrGBteW2q2ccdduD7U4yP8E342QCSCxYleQ6daqsi9ALSt5QQtTbQilhrCM974gWhHY3j9CGCsU6rtXwGG0Ia498EPQEnZZyRQjhVImn6IQNUkim-Qb9fA_V4t3B53R7GNd6yLYCDtGvDgqe17jFzkYHGTuYZ-zB1t05XkJNbpeiz8HOOCx7G_ICsWIbPU63wdsargGXmqGUZsMWz6mpKuQFb-fVpQJd69UcXAWPXVOFGlJ8hp5Mdi7w_KGeoe8fP3y7-Nxdfv305eLdZedYL2un-SD1yBzVkvNhUnQaiaWMajFo3ysGYmR6HCetvLSuV8ILquxkQTFBNKXsDL0-evc5_VjbIWYJ5e6HNkJai2GES0F7IlhDX_2DXqU1x3bdPSUl6WXfqP5IuZxKyTCZfQ6LzQdDiblLyxzTMi0tc5-WuWlDLx_U67iA_zPyO54GsCNQWituIf_d_R_tL4s7onI</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Shirian, Farzad Izak</creator><creator>Karimi, Milad</creator><creator>Alipour, Maryam</creator><creator>Salami, Siamak</creator><creator>Nourbakhsh, Mitra</creator><creator>Nekufar, Samira</creator><creator>Safari-Alighiarloo, Nahid</creator><creator>Tavakoli-Yaraki, Masoumeh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4449-9248</orcidid></search><sort><creationdate>20241201</creationdate><title>Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition</title><author>Shirian, Farzad Izak ; Karimi, Milad ; Alipour, Maryam ; Salami, Siamak ; Nourbakhsh, Mitra ; Nekufar, Samira ; Safari-Alighiarloo, Nahid ; Tavakoli-Yaraki, Masoumeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-94869b3c196448f71fb0a1319589d273e5b39bbf97d6ac275d517afae73509113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-Hydroxybutyric Acid - pharmacology</topic><topic>A549 Cells</topic><topic>AC133 Antigen - genetics</topic><topic>AC133 Antigen - metabolism</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>CD44 antigen</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell survival</topic><topic>Cell Survival - drug effects</topic><topic>Colorimetry</topic><topic>Flow cytometry</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glutathione peroxidase</topic><topic>Histology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Plasticity</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirian, Farzad Izak</creatorcontrib><creatorcontrib>Karimi, Milad</creatorcontrib><creatorcontrib>Alipour, Maryam</creatorcontrib><creatorcontrib>Salami, Siamak</creatorcontrib><creatorcontrib>Nourbakhsh, Mitra</creatorcontrib><creatorcontrib>Nekufar, Samira</creatorcontrib><creatorcontrib>Safari-Alighiarloo, Nahid</creatorcontrib><creatorcontrib>Tavakoli-Yaraki, Masoumeh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirian, Farzad Izak</au><au>Karimi, Milad</au><au>Alipour, Maryam</au><au>Salami, Siamak</au><au>Nourbakhsh, Mitra</au><au>Nekufar, Samira</au><au>Safari-Alighiarloo, Nahid</au><au>Tavakoli-Yaraki, Masoumeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>51</volume><issue>1</issue><spage>567</spage><epage>567</epage><pages>567-567</pages><artnum>567</artnum><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Background
Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells.
Methods and results
A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings.
Conclusion
The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38656394</pmid><doi>10.1007/s11033-024-09501-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4449-9248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4851 |
ispartof | Molecular biology reports, 2024-12, Vol.51 (1), p.567-567, Article 567 |
issn | 0301-4851 1573-4978 |
language | eng |
recordid | cdi_proquest_miscellaneous_3046512053 |
source | MEDLINE; SpringerNature Journals |
subjects | 3-Hydroxybutyric Acid - pharmacology A549 Cells AC133 Antigen - genetics AC133 Antigen - metabolism Animal Anatomy Animal Biochemistry Apoptosis Apoptosis - drug effects Biomedical and Life Sciences CD44 antigen Cell death Cell Death - drug effects Cell growth Cell Line, Tumor Cell Proliferation - drug effects Cell survival Cell Survival - drug effects Colorimetry Flow cytometry Glucose Glucose - metabolism Glutathione peroxidase Histology Humans Life Sciences Lung cancer Lung Neoplasms - drug therapy Lung Neoplasms - metabolism Lung Neoplasms - pathology Membrane potential Membrane Potential, Mitochondrial - drug effects Metabolism Mitochondria Mitochondria - drug effects Mitochondria - metabolism Morphology Original Article Oxidative stress Oxidative Stress - drug effects Plasticity Reactive oxygen species Reactive Oxygen Species - metabolism Superoxide dismutase Superoxide Dismutase - metabolism β-Catenin |
title | Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beta%20hydroxybutyrate%20induces%20lung%20cancer%20cell%20death,%20mitochondrial%20impairment%20and%20oxidative%20stress%20in%20a%20long%20term%20glucose-restricted%20condition&rft.jtitle=Molecular%20biology%20reports&rft.au=Shirian,%20Farzad%20Izak&rft.date=2024-12-01&rft.volume=51&rft.issue=1&rft.spage=567&rft.epage=567&rft.pages=567-567&rft.artnum=567&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-024-09501-w&rft_dat=%3Cproquest_cross%3E3046660262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046660262&rft_id=info:pmid/38656394&rfr_iscdi=true |