A lasso and random forest model using flow cytometry data identifies primary myelofibrosis
Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular mark...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part B, Clinical cytometry Clinical cytometry, 2024-07, Vol.106 (4), p.272-281 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 4 |
container_start_page | 272 |
container_title | Cytometry. Part B, Clinical cytometry |
container_volume | 106 |
creator | Zhang, Feng Wang, Ya‐Zhe Chang, Yan Yuan, Xiao‐Ying Shi, Wei‐Hua Shi, Hong‐Xia Shen, Jian‐Zhen Liu, Yan‐Rong |
description | Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions. |
doi_str_mv | 10.1002/cyto.b.22173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3045114089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045114089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3213-d76ff50473b5f95ebc9d90b010e479d5869fb2a6ee1fd53645c24d588878f2c03</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EoqWwMSNLLAy0-DOJx1LxJVXqUgZYLCe2kaskLnGiKv89LikMDCx3p9NP7949AC4xmmGEyF3Rt36WzwjBKT0CY8w5mTLB0-PfmYkROAthgxDlLElPwYhmCUtxxsfgfQ5LFYKHqtawicVX0PrGhBZWXpsSdsHVH9CWfgf3lyrTNj3UqlXQaVO3zjoT4LZxlYr7qjelty5vfHDhHJxYVQZzcegT8Pr4sF48T5erp5fFfDktKMF0qtPEWo5YSnNuBTd5IbRAOcLIsFRoniXC5kQlxmCrOU0YLwiL6yxLM0sKRCfgZtDdNv6zi85l5UJhylLVxndBUsQ4xgxlIqLXf9CN75o6uotUxomIPnikbgeqiH-Exlh5-E9iJPeZy30SMpffmUf86iDa5ZXRv_BPyBFgA7Bzpen_FZOLt_XqftD9AiofjiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085295045</pqid></control><display><type>article</type><title>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Feng ; Wang, Ya‐Zhe ; Chang, Yan ; Yuan, Xiao‐Ying ; Shi, Wei‐Hua ; Shi, Hong‐Xia ; Shen, Jian‐Zhen ; Liu, Yan‐Rong</creator><creatorcontrib>Zhang, Feng ; Wang, Ya‐Zhe ; Chang, Yan ; Yuan, Xiao‐Ying ; Shi, Wei‐Hua ; Shi, Hong‐Xia ; Shen, Jian‐Zhen ; Liu, Yan‐Rong</creatorcontrib><description>Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.</description><identifier>ISSN: 1552-4949</identifier><identifier>ISSN: 1552-4957</identifier><identifier>EISSN: 1552-4957</identifier><identifier>DOI: 10.1002/cyto.b.22173</identifier><identifier>PMID: 38647185</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Blast cells ; CD11b antigen ; CD123 antigen ; CD19 antigen ; CD34 antigen ; CD38 antigen ; Cell differentiation ; Decision trees ; Dendritic cells ; Diagnosis ; Differential diagnosis ; Flow cytometry ; Gene expression ; Hemoglobin ; immunophenotyping ; Karyotypes ; Leukocytes (basophilic) ; Leukocytes (granulocytic) ; Monocytes ; Myelofibrosis ; Neoplasms ; overt primary myelofibrosis ; Peripheral blood ; Phenotypes ; Photovoltaic cells ; Physical characteristics ; Plasma cells ; Polycythemia ; Polycythemia vera ; prefibrotic primary myelofibrosis ; Random variables ; Regression analysis ; Regression models ; thrombocythemia ; WT1 protein</subject><ispartof>Cytometry. Part B, Clinical cytometry, 2024-07, Vol.106 (4), p.272-281</ispartof><rights>2024 International Clinical Cytometry Society.</rights><rights>2024 International Clinical Cytometry Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3213-d76ff50473b5f95ebc9d90b010e479d5869fb2a6ee1fd53645c24d588878f2c03</cites><orcidid>0000-0001-8259-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.b.22173$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.b.22173$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38647185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Wang, Ya‐Zhe</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><creatorcontrib>Yuan, Xiao‐Ying</creatorcontrib><creatorcontrib>Shi, Wei‐Hua</creatorcontrib><creatorcontrib>Shi, Hong‐Xia</creatorcontrib><creatorcontrib>Shen, Jian‐Zhen</creatorcontrib><creatorcontrib>Liu, Yan‐Rong</creatorcontrib><title>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</title><title>Cytometry. Part B, Clinical cytometry</title><addtitle>Cytometry B Clin Cytom</addtitle><description>Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.</description><subject>Blast cells</subject><subject>CD11b antigen</subject><subject>CD123 antigen</subject><subject>CD19 antigen</subject><subject>CD34 antigen</subject><subject>CD38 antigen</subject><subject>Cell differentiation</subject><subject>Decision trees</subject><subject>Dendritic cells</subject><subject>Diagnosis</subject><subject>Differential diagnosis</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Hemoglobin</subject><subject>immunophenotyping</subject><subject>Karyotypes</subject><subject>Leukocytes (basophilic)</subject><subject>Leukocytes (granulocytic)</subject><subject>Monocytes</subject><subject>Myelofibrosis</subject><subject>Neoplasms</subject><subject>overt primary myelofibrosis</subject><subject>Peripheral blood</subject><subject>Phenotypes</subject><subject>Photovoltaic cells</subject><subject>Physical characteristics</subject><subject>Plasma cells</subject><subject>Polycythemia</subject><subject>Polycythemia vera</subject><subject>prefibrotic primary myelofibrosis</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>thrombocythemia</subject><subject>WT1 protein</subject><issn>1552-4949</issn><issn>1552-4957</issn><issn>1552-4957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EoqWwMSNLLAy0-DOJx1LxJVXqUgZYLCe2kaskLnGiKv89LikMDCx3p9NP7949AC4xmmGEyF3Rt36WzwjBKT0CY8w5mTLB0-PfmYkROAthgxDlLElPwYhmCUtxxsfgfQ5LFYKHqtawicVX0PrGhBZWXpsSdsHVH9CWfgf3lyrTNj3UqlXQaVO3zjoT4LZxlYr7qjelty5vfHDhHJxYVQZzcegT8Pr4sF48T5erp5fFfDktKMF0qtPEWo5YSnNuBTd5IbRAOcLIsFRoniXC5kQlxmCrOU0YLwiL6yxLM0sKRCfgZtDdNv6zi85l5UJhylLVxndBUsQ4xgxlIqLXf9CN75o6uotUxomIPnikbgeqiH-Exlh5-E9iJPeZy30SMpffmUf86iDa5ZXRv_BPyBFgA7Bzpen_FZOLt_XqftD9AiofjiU</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zhang, Feng</creator><creator>Wang, Ya‐Zhe</creator><creator>Chang, Yan</creator><creator>Yuan, Xiao‐Ying</creator><creator>Shi, Wei‐Hua</creator><creator>Shi, Hong‐Xia</creator><creator>Shen, Jian‐Zhen</creator><creator>Liu, Yan‐Rong</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8259-5367</orcidid></search><sort><creationdate>202407</creationdate><title>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</title><author>Zhang, Feng ; Wang, Ya‐Zhe ; Chang, Yan ; Yuan, Xiao‐Ying ; Shi, Wei‐Hua ; Shi, Hong‐Xia ; Shen, Jian‐Zhen ; Liu, Yan‐Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3213-d76ff50473b5f95ebc9d90b010e479d5869fb2a6ee1fd53645c24d588878f2c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blast cells</topic><topic>CD11b antigen</topic><topic>CD123 antigen</topic><topic>CD19 antigen</topic><topic>CD34 antigen</topic><topic>CD38 antigen</topic><topic>Cell differentiation</topic><topic>Decision trees</topic><topic>Dendritic cells</topic><topic>Diagnosis</topic><topic>Differential diagnosis</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Hemoglobin</topic><topic>immunophenotyping</topic><topic>Karyotypes</topic><topic>Leukocytes (basophilic)</topic><topic>Leukocytes (granulocytic)</topic><topic>Monocytes</topic><topic>Myelofibrosis</topic><topic>Neoplasms</topic><topic>overt primary myelofibrosis</topic><topic>Peripheral blood</topic><topic>Phenotypes</topic><topic>Photovoltaic cells</topic><topic>Physical characteristics</topic><topic>Plasma cells</topic><topic>Polycythemia</topic><topic>Polycythemia vera</topic><topic>prefibrotic primary myelofibrosis</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>thrombocythemia</topic><topic>WT1 protein</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Wang, Ya‐Zhe</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><creatorcontrib>Yuan, Xiao‐Ying</creatorcontrib><creatorcontrib>Shi, Wei‐Hua</creatorcontrib><creatorcontrib>Shi, Hong‐Xia</creatorcontrib><creatorcontrib>Shen, Jian‐Zhen</creatorcontrib><creatorcontrib>Liu, Yan‐Rong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part B, Clinical cytometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Feng</au><au>Wang, Ya‐Zhe</au><au>Chang, Yan</au><au>Yuan, Xiao‐Ying</au><au>Shi, Wei‐Hua</au><au>Shi, Hong‐Xia</au><au>Shen, Jian‐Zhen</au><au>Liu, Yan‐Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</atitle><jtitle>Cytometry. Part B, Clinical cytometry</jtitle><addtitle>Cytometry B Clin Cytom</addtitle><date>2024-07</date><risdate>2024</risdate><volume>106</volume><issue>4</issue><spage>272</spage><epage>281</epage><pages>272-281</pages><issn>1552-4949</issn><issn>1552-4957</issn><eissn>1552-4957</eissn><abstract>Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38647185</pmid><doi>10.1002/cyto.b.22173</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8259-5367</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4949 |
ispartof | Cytometry. Part B, Clinical cytometry, 2024-07, Vol.106 (4), p.272-281 |
issn | 1552-4949 1552-4957 1552-4957 |
language | eng |
recordid | cdi_proquest_miscellaneous_3045114089 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Blast cells CD11b antigen CD123 antigen CD19 antigen CD34 antigen CD38 antigen Cell differentiation Decision trees Dendritic cells Diagnosis Differential diagnosis Flow cytometry Gene expression Hemoglobin immunophenotyping Karyotypes Leukocytes (basophilic) Leukocytes (granulocytic) Monocytes Myelofibrosis Neoplasms overt primary myelofibrosis Peripheral blood Phenotypes Photovoltaic cells Physical characteristics Plasma cells Polycythemia Polycythemia vera prefibrotic primary myelofibrosis Random variables Regression analysis Regression models thrombocythemia WT1 protein |
title | A lasso and random forest model using flow cytometry data identifies primary myelofibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lasso%20and%20random%20forest%20model%20using%20flow%20cytometry%20data%20identifies%20primary%20myelofibrosis&rft.jtitle=Cytometry.%20Part%20B,%20Clinical%20cytometry&rft.au=Zhang,%20Feng&rft.date=2024-07&rft.volume=106&rft.issue=4&rft.spage=272&rft.epage=281&rft.pages=272-281&rft.issn=1552-4949&rft.eissn=1552-4957&rft_id=info:doi/10.1002/cyto.b.22173&rft_dat=%3Cproquest_cross%3E3045114089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085295045&rft_id=info:pmid/38647185&rfr_iscdi=true |