A lasso and random forest model using flow cytometry data identifies primary myelofibrosis

Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular mark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part B, Clinical cytometry Clinical cytometry, 2024-07, Vol.106 (4), p.272-281
Hauptverfasser: Zhang, Feng, Wang, Ya‐Zhe, Chang, Yan, Yuan, Xiao‐Ying, Shi, Wei‐Hua, Shi, Hong‐Xia, Shen, Jian‐Zhen, Liu, Yan‐Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 4
container_start_page 272
container_title Cytometry. Part B, Clinical cytometry
container_volume 106
creator Zhang, Feng
Wang, Ya‐Zhe
Chang, Yan
Yuan, Xiao‐Ying
Shi, Wei‐Hua
Shi, Hong‐Xia
Shen, Jian‐Zhen
Liu, Yan‐Rong
description Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.
doi_str_mv 10.1002/cyto.b.22173
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3045114089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045114089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3213-d76ff50473b5f95ebc9d90b010e479d5869fb2a6ee1fd53645c24d588878f2c03</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EoqWwMSNLLAy0-DOJx1LxJVXqUgZYLCe2kaskLnGiKv89LikMDCx3p9NP7949AC4xmmGEyF3Rt36WzwjBKT0CY8w5mTLB0-PfmYkROAthgxDlLElPwYhmCUtxxsfgfQ5LFYKHqtawicVX0PrGhBZWXpsSdsHVH9CWfgf3lyrTNj3UqlXQaVO3zjoT4LZxlYr7qjelty5vfHDhHJxYVQZzcegT8Pr4sF48T5erp5fFfDktKMF0qtPEWo5YSnNuBTd5IbRAOcLIsFRoniXC5kQlxmCrOU0YLwiL6yxLM0sKRCfgZtDdNv6zi85l5UJhylLVxndBUsQ4xgxlIqLXf9CN75o6uotUxomIPnikbgeqiH-Exlh5-E9iJPeZy30SMpffmUf86iDa5ZXRv_BPyBFgA7Bzpen_FZOLt_XqftD9AiofjiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085295045</pqid></control><display><type>article</type><title>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Feng ; Wang, Ya‐Zhe ; Chang, Yan ; Yuan, Xiao‐Ying ; Shi, Wei‐Hua ; Shi, Hong‐Xia ; Shen, Jian‐Zhen ; Liu, Yan‐Rong</creator><creatorcontrib>Zhang, Feng ; Wang, Ya‐Zhe ; Chang, Yan ; Yuan, Xiao‐Ying ; Shi, Wei‐Hua ; Shi, Hong‐Xia ; Shen, Jian‐Zhen ; Liu, Yan‐Rong</creatorcontrib><description>Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.</description><identifier>ISSN: 1552-4949</identifier><identifier>ISSN: 1552-4957</identifier><identifier>EISSN: 1552-4957</identifier><identifier>DOI: 10.1002/cyto.b.22173</identifier><identifier>PMID: 38647185</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Blast cells ; CD11b antigen ; CD123 antigen ; CD19 antigen ; CD34 antigen ; CD38 antigen ; Cell differentiation ; Decision trees ; Dendritic cells ; Diagnosis ; Differential diagnosis ; Flow cytometry ; Gene expression ; Hemoglobin ; immunophenotyping ; Karyotypes ; Leukocytes (basophilic) ; Leukocytes (granulocytic) ; Monocytes ; Myelofibrosis ; Neoplasms ; overt primary myelofibrosis ; Peripheral blood ; Phenotypes ; Photovoltaic cells ; Physical characteristics ; Plasma cells ; Polycythemia ; Polycythemia vera ; prefibrotic primary myelofibrosis ; Random variables ; Regression analysis ; Regression models ; thrombocythemia ; WT1 protein</subject><ispartof>Cytometry. Part B, Clinical cytometry, 2024-07, Vol.106 (4), p.272-281</ispartof><rights>2024 International Clinical Cytometry Society.</rights><rights>2024 International Clinical Cytometry Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3213-d76ff50473b5f95ebc9d90b010e479d5869fb2a6ee1fd53645c24d588878f2c03</cites><orcidid>0000-0001-8259-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.b.22173$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.b.22173$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38647185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Wang, Ya‐Zhe</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><creatorcontrib>Yuan, Xiao‐Ying</creatorcontrib><creatorcontrib>Shi, Wei‐Hua</creatorcontrib><creatorcontrib>Shi, Hong‐Xia</creatorcontrib><creatorcontrib>Shen, Jian‐Zhen</creatorcontrib><creatorcontrib>Liu, Yan‐Rong</creatorcontrib><title>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</title><title>Cytometry. Part B, Clinical cytometry</title><addtitle>Cytometry B Clin Cytom</addtitle><description>Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.</description><subject>Blast cells</subject><subject>CD11b antigen</subject><subject>CD123 antigen</subject><subject>CD19 antigen</subject><subject>CD34 antigen</subject><subject>CD38 antigen</subject><subject>Cell differentiation</subject><subject>Decision trees</subject><subject>Dendritic cells</subject><subject>Diagnosis</subject><subject>Differential diagnosis</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Hemoglobin</subject><subject>immunophenotyping</subject><subject>Karyotypes</subject><subject>Leukocytes (basophilic)</subject><subject>Leukocytes (granulocytic)</subject><subject>Monocytes</subject><subject>Myelofibrosis</subject><subject>Neoplasms</subject><subject>overt primary myelofibrosis</subject><subject>Peripheral blood</subject><subject>Phenotypes</subject><subject>Photovoltaic cells</subject><subject>Physical characteristics</subject><subject>Plasma cells</subject><subject>Polycythemia</subject><subject>Polycythemia vera</subject><subject>prefibrotic primary myelofibrosis</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>thrombocythemia</subject><subject>WT1 protein</subject><issn>1552-4949</issn><issn>1552-4957</issn><issn>1552-4957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EoqWwMSNLLAy0-DOJx1LxJVXqUgZYLCe2kaskLnGiKv89LikMDCx3p9NP7949AC4xmmGEyF3Rt36WzwjBKT0CY8w5mTLB0-PfmYkROAthgxDlLElPwYhmCUtxxsfgfQ5LFYKHqtawicVX0PrGhBZWXpsSdsHVH9CWfgf3lyrTNj3UqlXQaVO3zjoT4LZxlYr7qjelty5vfHDhHJxYVQZzcegT8Pr4sF48T5erp5fFfDktKMF0qtPEWo5YSnNuBTd5IbRAOcLIsFRoniXC5kQlxmCrOU0YLwiL6yxLM0sKRCfgZtDdNv6zi85l5UJhylLVxndBUsQ4xgxlIqLXf9CN75o6uotUxomIPnikbgeqiH-Exlh5-E9iJPeZy30SMpffmUf86iDa5ZXRv_BPyBFgA7Bzpen_FZOLt_XqftD9AiofjiU</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zhang, Feng</creator><creator>Wang, Ya‐Zhe</creator><creator>Chang, Yan</creator><creator>Yuan, Xiao‐Ying</creator><creator>Shi, Wei‐Hua</creator><creator>Shi, Hong‐Xia</creator><creator>Shen, Jian‐Zhen</creator><creator>Liu, Yan‐Rong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8259-5367</orcidid></search><sort><creationdate>202407</creationdate><title>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</title><author>Zhang, Feng ; Wang, Ya‐Zhe ; Chang, Yan ; Yuan, Xiao‐Ying ; Shi, Wei‐Hua ; Shi, Hong‐Xia ; Shen, Jian‐Zhen ; Liu, Yan‐Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3213-d76ff50473b5f95ebc9d90b010e479d5869fb2a6ee1fd53645c24d588878f2c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blast cells</topic><topic>CD11b antigen</topic><topic>CD123 antigen</topic><topic>CD19 antigen</topic><topic>CD34 antigen</topic><topic>CD38 antigen</topic><topic>Cell differentiation</topic><topic>Decision trees</topic><topic>Dendritic cells</topic><topic>Diagnosis</topic><topic>Differential diagnosis</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Hemoglobin</topic><topic>immunophenotyping</topic><topic>Karyotypes</topic><topic>Leukocytes (basophilic)</topic><topic>Leukocytes (granulocytic)</topic><topic>Monocytes</topic><topic>Myelofibrosis</topic><topic>Neoplasms</topic><topic>overt primary myelofibrosis</topic><topic>Peripheral blood</topic><topic>Phenotypes</topic><topic>Photovoltaic cells</topic><topic>Physical characteristics</topic><topic>Plasma cells</topic><topic>Polycythemia</topic><topic>Polycythemia vera</topic><topic>prefibrotic primary myelofibrosis</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>thrombocythemia</topic><topic>WT1 protein</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Wang, Ya‐Zhe</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><creatorcontrib>Yuan, Xiao‐Ying</creatorcontrib><creatorcontrib>Shi, Wei‐Hua</creatorcontrib><creatorcontrib>Shi, Hong‐Xia</creatorcontrib><creatorcontrib>Shen, Jian‐Zhen</creatorcontrib><creatorcontrib>Liu, Yan‐Rong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part B, Clinical cytometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Feng</au><au>Wang, Ya‐Zhe</au><au>Chang, Yan</au><au>Yuan, Xiao‐Ying</au><au>Shi, Wei‐Hua</au><au>Shi, Hong‐Xia</au><au>Shen, Jian‐Zhen</au><au>Liu, Yan‐Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lasso and random forest model using flow cytometry data identifies primary myelofibrosis</atitle><jtitle>Cytometry. Part B, Clinical cytometry</jtitle><addtitle>Cytometry B Clin Cytom</addtitle><date>2024-07</date><risdate>2024</risdate><volume>106</volume><issue>4</issue><spage>272</spage><epage>281</epage><pages>272-281</pages><issn>1552-4949</issn><issn>1552-4957</issn><eissn>1552-4957</eissn><abstract>Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre‐PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia‐Negative (Ph‐negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph‐negative MPN patients, including ET, PV, pre‐PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38− cells on CD34+cells, CD13dim+CD11b− cells in granulocytes, CD38str+CD19+/−plasma, and CD123+HLA‐DR−basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38− on CD34+ cells and platelet counts to distinguish between ET and pre‐PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre‐PMF from ET and guides treatment decisions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38647185</pmid><doi>10.1002/cyto.b.22173</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8259-5367</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4949
ispartof Cytometry. Part B, Clinical cytometry, 2024-07, Vol.106 (4), p.272-281
issn 1552-4949
1552-4957
1552-4957
language eng
recordid cdi_proquest_miscellaneous_3045114089
source Wiley Online Library Journals Frontfile Complete
subjects Blast cells
CD11b antigen
CD123 antigen
CD19 antigen
CD34 antigen
CD38 antigen
Cell differentiation
Decision trees
Dendritic cells
Diagnosis
Differential diagnosis
Flow cytometry
Gene expression
Hemoglobin
immunophenotyping
Karyotypes
Leukocytes (basophilic)
Leukocytes (granulocytic)
Monocytes
Myelofibrosis
Neoplasms
overt primary myelofibrosis
Peripheral blood
Phenotypes
Photovoltaic cells
Physical characteristics
Plasma cells
Polycythemia
Polycythemia vera
prefibrotic primary myelofibrosis
Random variables
Regression analysis
Regression models
thrombocythemia
WT1 protein
title A lasso and random forest model using flow cytometry data identifies primary myelofibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lasso%20and%20random%20forest%20model%20using%20flow%20cytometry%20data%20identifies%20primary%20myelofibrosis&rft.jtitle=Cytometry.%20Part%20B,%20Clinical%20cytometry&rft.au=Zhang,%20Feng&rft.date=2024-07&rft.volume=106&rft.issue=4&rft.spage=272&rft.epage=281&rft.pages=272-281&rft.issn=1552-4949&rft.eissn=1552-4957&rft_id=info:doi/10.1002/cyto.b.22173&rft_dat=%3Cproquest_cross%3E3045114089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085295045&rft_id=info:pmid/38647185&rfr_iscdi=true