A liquid metal/polypyrrole electrospun TPU composite conductive network for highly sensitive strain sensing in human motion monitoring

Developing soft wearable sensors with high sensitivity, low cost, and a wide monitoring range is crucial for monitoring human health. Despite advances in strain sensor technology, achieving high sensitivity and a wide operating range in a single device remains a major challenge in its design and pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-05, Vol.12 (19), p.4655-4665
Hauptverfasser: Du, Juan, Han, Qinghui, Chen, Aibing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing soft wearable sensors with high sensitivity, low cost, and a wide monitoring range is crucial for monitoring human health. Despite advances in strain sensor technology, achieving high sensitivity and a wide operating range in a single device remains a major challenge in its design and preparation. Herein, a liquid metal (LM) is innovatively ultrasonically anchored to the gaps and surfaces of thermoplastic polyurethane (TPU) electrospun fibers, and then a conductive pathway is constructed through polypyrrole (PPy) self-polymerization to prepare a composite film. The strain sensor developed by ultrasonic anchoring and original polymerization technology shows a high strain coefficient (GF = 4.36 at 12.5% strain) and a low detection limit (less than 1% strain). Importantly, this sensor can monitor joint motion and subtle skin deformations in real time. In addition, the integration of strain sensors and N95 masks enables real-time monitoring of human respiration. Developing soft wearable sensors with high sensitivity, low cost, and a wide monitoring range is crucial for monitoring human health.
ISSN:2050-750X
2050-7518
DOI:10.1039/d3tb02394j