Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2)
An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next‐generation cathodes. High‐voltage, Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4 cathodes of...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2400343-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e2400343 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Murdock, Beth E. Cen, Jiayi Squires, Alexander G. Kavanagh, Seán R. Scanlon, David O. Zhang, Li Tapia‐Ruiz, Nuria |
description | An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next‐generation cathodes. High‐voltage, Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4 cathodes offer a low‐cost, cobalt‐free, yet energy‐dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation‐disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li‐site defects, and Li‐rich impurity phase formation—the concentrations of which are greater for Mg‐substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li‐site defect‐induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off‐stoichiometry), although their effects are found to be negligible.
LiNi0.5Mn1.5O4—a high‐voltage cathode for lithium‐ion batteries—often suffers from poor cycling stability—a challenge frequently addressed through cationic substitution. Bridging experimental testing and computational modeling, this research delves into the intricacies of Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4, exploring the effects on [Mn3+], [Ni3+], oxygen vacancies, defects, and impurity phases. The correlation between Li‐site defects and Li‐rich impurity phases is revealed. |
doi_str_mv | 10.1002/adma.202400343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3043071430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043071430</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2363-d3a2575ee5efff7c301e39dc176a1c3114292935b99766441b6171b4efc859dc3</originalsourceid><addsrcrecordid>eNpdkctuEzEUhi1EJUJhy9oSm7KY6fFtpgaxiFJSImVoxWU9cjx242ouwZ4Rya5LllV5Fx4oT1Jnirpg46Njff6OdX6E3hBICQA9VVWjUgqUAzDOnqEJEZQkHKR4jiYgmUhkxs9eoJch3ACAzCCboL9Lt7-9--Z6g8-NNboPeNFWgzZ43vlG9a5rcWfxSH11eo0XzWbwrt_hq7UKJrw_XNROj2TAtvN4tlb-Oupc6L1bDaNCtRW-Mt4enG2Uj8ovDlKx_32_LbZFS1JxyfFM9euuMgGfFPgjnpvxYXH9AW9jCymI_e0fSOm7V-jIqjqY1__qMfox__R99jlZXl4sZtNlsqEsY0nFFBW5MEYYa22uGRDDZKVJnimiGSGcSho3s5IyzzLOySojOVlxY_WZiBw7RieP3o3vfg4m9GXjgjZ1rVrTDaFkwBnkJB4RffsfetMNvo2_i5QESkQcESn5SP1ytdmVG-8a5XclgfKQYXnIsHzKsJyeF9Onjj0AXfKSdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090215766</pqid></control><display><type>article</type><title>Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Murdock, Beth E. ; Cen, Jiayi ; Squires, Alexander G. ; Kavanagh, Seán R. ; Scanlon, David O. ; Zhang, Li ; Tapia‐Ruiz, Nuria</creator><creatorcontrib>Murdock, Beth E. ; Cen, Jiayi ; Squires, Alexander G. ; Kavanagh, Seán R. ; Scanlon, David O. ; Zhang, Li ; Tapia‐Ruiz, Nuria</creatorcontrib><description>An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next‐generation cathodes. High‐voltage, Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4 cathodes offer a low‐cost, cobalt‐free, yet energy‐dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation‐disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li‐site defects, and Li‐rich impurity phase formation—the concentrations of which are greater for Mg‐substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li‐site defect‐induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off‐stoichiometry), although their effects are found to be negligible.
LiNi0.5Mn1.5O4—a high‐voltage cathode for lithium‐ion batteries—often suffers from poor cycling stability—a challenge frequently addressed through cationic substitution. Bridging experimental testing and computational modeling, this research delves into the intricacies of Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4, exploring the effects on [Mn3+], [Ni3+], oxygen vacancies, defects, and impurity phases. The correlation between Li‐site defects and Li‐rich impurity phases is revealed.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202400343</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; cationic substitution ; charge compensators (Mn3+, Ni3+, oxygen vacancies) ; Charge distribution ; Commercialization ; Compensators ; Defects ; Energy distribution ; extrinsic defects ; Fe/Mg doping ; Free energy ; Heat of formation ; high‐voltage LiNi0.5Mn1.5O4 ; Impurities ; Iron ; Magnesium ; Materials substitution ; Phases ; Stoichiometry</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2400343-n/a</ispartof><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3811-7450 ; 0000-0002-5005-7043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202400343$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202400343$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Murdock, Beth E.</creatorcontrib><creatorcontrib>Cen, Jiayi</creatorcontrib><creatorcontrib>Squires, Alexander G.</creatorcontrib><creatorcontrib>Kavanagh, Seán R.</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Tapia‐Ruiz, Nuria</creatorcontrib><title>Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2)</title><title>Advanced materials (Weinheim)</title><description>An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next‐generation cathodes. High‐voltage, Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4 cathodes offer a low‐cost, cobalt‐free, yet energy‐dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation‐disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li‐site defects, and Li‐rich impurity phase formation—the concentrations of which are greater for Mg‐substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li‐site defect‐induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off‐stoichiometry), although their effects are found to be negligible.
LiNi0.5Mn1.5O4—a high‐voltage cathode for lithium‐ion batteries—often suffers from poor cycling stability—a challenge frequently addressed through cationic substitution. Bridging experimental testing and computational modeling, this research delves into the intricacies of Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4, exploring the effects on [Mn3+], [Ni3+], oxygen vacancies, defects, and impurity phases. The correlation between Li‐site defects and Li‐rich impurity phases is revealed.</description><subject>Cathodes</subject><subject>cationic substitution</subject><subject>charge compensators (Mn3+, Ni3+, oxygen vacancies)</subject><subject>Charge distribution</subject><subject>Commercialization</subject><subject>Compensators</subject><subject>Defects</subject><subject>Energy distribution</subject><subject>extrinsic defects</subject><subject>Fe/Mg doping</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>high‐voltage LiNi0.5Mn1.5O4</subject><subject>Impurities</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Materials substitution</subject><subject>Phases</subject><subject>Stoichiometry</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkctuEzEUhi1EJUJhy9oSm7KY6fFtpgaxiFJSImVoxWU9cjx242ouwZ4Rya5LllV5Fx4oT1Jnirpg46Njff6OdX6E3hBICQA9VVWjUgqUAzDOnqEJEZQkHKR4jiYgmUhkxs9eoJch3ACAzCCboL9Lt7-9--Z6g8-NNboPeNFWgzZ43vlG9a5rcWfxSH11eo0XzWbwrt_hq7UKJrw_XNROj2TAtvN4tlb-Oupc6L1bDaNCtRW-Mt4enG2Uj8ovDlKx_32_LbZFS1JxyfFM9euuMgGfFPgjnpvxYXH9AW9jCymI_e0fSOm7V-jIqjqY1__qMfox__R99jlZXl4sZtNlsqEsY0nFFBW5MEYYa22uGRDDZKVJnimiGSGcSho3s5IyzzLOySojOVlxY_WZiBw7RieP3o3vfg4m9GXjgjZ1rVrTDaFkwBnkJB4RffsfetMNvo2_i5QESkQcESn5SP1ytdmVG-8a5XclgfKQYXnIsHzKsJyeF9Onjj0AXfKSdQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Murdock, Beth E.</creator><creator>Cen, Jiayi</creator><creator>Squires, Alexander G.</creator><creator>Kavanagh, Seán R.</creator><creator>Scanlon, David O.</creator><creator>Zhang, Li</creator><creator>Tapia‐Ruiz, Nuria</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3811-7450</orcidid><orcidid>https://orcid.org/0000-0002-5005-7043</orcidid></search><sort><creationdate>20240801</creationdate><title>Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2)</title><author>Murdock, Beth E. ; Cen, Jiayi ; Squires, Alexander G. ; Kavanagh, Seán R. ; Scanlon, David O. ; Zhang, Li ; Tapia‐Ruiz, Nuria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2363-d3a2575ee5efff7c301e39dc176a1c3114292935b99766441b6171b4efc859dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>cationic substitution</topic><topic>charge compensators (Mn3+, Ni3+, oxygen vacancies)</topic><topic>Charge distribution</topic><topic>Commercialization</topic><topic>Compensators</topic><topic>Defects</topic><topic>Energy distribution</topic><topic>extrinsic defects</topic><topic>Fe/Mg doping</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>high‐voltage LiNi0.5Mn1.5O4</topic><topic>Impurities</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Materials substitution</topic><topic>Phases</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murdock, Beth E.</creatorcontrib><creatorcontrib>Cen, Jiayi</creatorcontrib><creatorcontrib>Squires, Alexander G.</creatorcontrib><creatorcontrib>Kavanagh, Seán R.</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Tapia‐Ruiz, Nuria</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murdock, Beth E.</au><au>Cen, Jiayi</au><au>Squires, Alexander G.</au><au>Kavanagh, Seán R.</au><au>Scanlon, David O.</au><au>Zhang, Li</au><au>Tapia‐Ruiz, Nuria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2)</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>32</issue><spage>e2400343</spage><epage>n/a</epage><pages>e2400343-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialization of next‐generation cathodes. High‐voltage, Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4 cathodes offer a low‐cost, cobalt‐free, yet energy‐dense alternative to commercial cathodes. In this work, the effect of substitution on several important structure properties is explored, including Ni/Mn ordering, charge distribution, and extrinsic defects. In the cation‐disordered samples studied, a correlation is observed between increased Fe/Mg substitution, Li‐site defects, and Li‐rich impurity phase formation—the concentrations of which are greater for Mg‐substituted samples. This is attributed to the lower formation energy of MgLi defects when compared to FeLi defects. Li‐site defect‐induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+] with Fe/Mg substitution. In addition to impurity phases, other charge compensators are also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+], oxygen vacancies and intrinsic off‐stoichiometry), although their effects are found to be negligible.
LiNi0.5Mn1.5O4—a high‐voltage cathode for lithium‐ion batteries—often suffers from poor cycling stability—a challenge frequently addressed through cationic substitution. Bridging experimental testing and computational modeling, this research delves into the intricacies of Fe‐ and Mg‐substituted LiNi0.5Mn1.5O4, exploring the effects on [Mn3+], [Ni3+], oxygen vacancies, defects, and impurity phases. The correlation between Li‐site defects and Li‐rich impurity phases is revealed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202400343</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3811-7450</orcidid><orcidid>https://orcid.org/0000-0002-5005-7043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2400343-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3043071430 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cathodes cationic substitution charge compensators (Mn3+, Ni3+, oxygen vacancies) Charge distribution Commercialization Compensators Defects Energy distribution extrinsic defects Fe/Mg doping Free energy Heat of formation high‐voltage LiNi0.5Mn1.5O4 Impurities Iron Magnesium Materials substitution Phases Stoichiometry |
title | Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li%E2%80%90Site%20Defects%20Induce%20Formation%20of%20Li%E2%80%90Rich%20Impurity%20Phases:%20Implications%20for%20Charge%20Distribution%20and%20Performance%20of%20LiNi0.5%E2%88%92xMxMn1.5O4%20Cathodes%20(M%20=%20Fe%20and%20Mg;%20x%20=%200.05%E2%80%930.2)&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Murdock,%20Beth%20E.&rft.date=2024-08-01&rft.volume=36&rft.issue=32&rft.spage=e2400343&rft.epage=n/a&rft.pages=e2400343-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202400343&rft_dat=%3Cproquest_wiley%3E3043071430%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090215766&rft_id=info:pmid/&rfr_iscdi=true |