Evaluating the validity of the nursing statements algorithmically generated based on the International Classifications of Nursing Practice for respiratory nursing care using large language models
This study aims to facilitate the creation of quality standardized nursing statements in South Korea's hospitals using algorithmic generation based on the International Classifications of Nursing Practice (ICNP) and evaluation through Large Language Models. We algorithmically generated 15 972 s...
Gespeichert in:
Veröffentlicht in: | Journal of the American Medical Informatics Association : JAMIA 2024-05, Vol.31 (6), p.1397-1403 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1403 |
---|---|
container_issue | 6 |
container_start_page | 1397 |
container_title | Journal of the American Medical Informatics Association : JAMIA |
container_volume | 31 |
creator | Kim, Hyeoneui Park, Hyewon Kang, Sunghoon Kim, Jinsol Kim, Jeongha Jung, Jinsun Taira, Ricky |
description | This study aims to facilitate the creation of quality standardized nursing statements in South Korea's hospitals using algorithmic generation based on the International Classifications of Nursing Practice (ICNP) and evaluation through Large Language Models.
We algorithmically generated 15 972 statements related to acute respiratory care using 117 concepts and concept composition models of ICNP. Human reviewers, Generative Pre-trained Transformers 4.0 (GPT-4.0), and Bio_Clinical Bidirectional Encoder Representations from Transformers (BERT) evaluated the generated statements for validity. The evaluation by GPT-4.0 and Bio_ClinicalBERT was conducted with and without contextual information and training.
Of the generated statements, 2207 were deemed valid by expert reviewers. GPT-4.0 showed a zero-shot AUC of 0.857, which aggravated with contextual information. Bio_ClinicalBERT, after training, significantly improved, reaching an AUC of 0.998.
Bio_ClinicalBERT effectively validates auto-generated nursing statements, offering a promising solution to enhance and streamline healthcare documentation processes. |
doi_str_mv | 10.1093/jamia/ocae070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3041232148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041232148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b7e0e175538a1d6352880b554b442c3c45a43d2c0714e4404791f294cd0010843</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhi0EoqVw5Ip85BLqzzg5olWBShVwAIlbNHEmqSvHXmwHaX8ffwzvdullPON55xnLLyFvOfvAWS-vH2B1cB0tIDPsGbnkWpimN-rX85qz1jSaCXNBXuX8wBhvhdQvyYXsWsl0116Svzd_wG9QXFhouUdaKze5cqBxPtVhS_nYywUKrhhKpuCXmFy5X50F7w90wYCpdic6Qq4xhtPkbSiYQiXHAJ7uPOTs5jpyvMhH_Ncz-nsCW5xFOsdEE-a9q7SYDk-7LSSk2yn1kBasMSwb1GSNE_r8mryYwWd8cz6vyM9PNz92X5q7b59vdx_vGitUX5rRIENutJYd8KmVWnQdG7VWo1LCSqs0KDkJywxXqBRTpuez6JWd6sexTskr8v6Ru0_x94a5DKvLFn19DsYtD5IpLqTgqqvS5lFqU8w54Tzsk1shHQbOhqNvw8m34exb1b87o7dxxelJ_d8o-Q-Cw5qV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041232148</pqid></control><display><type>article</type><title>Evaluating the validity of the nursing statements algorithmically generated based on the International Classifications of Nursing Practice for respiratory nursing care using large language models</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kim, Hyeoneui ; Park, Hyewon ; Kang, Sunghoon ; Kim, Jinsol ; Kim, Jeongha ; Jung, Jinsun ; Taira, Ricky</creator><creatorcontrib>Kim, Hyeoneui ; Park, Hyewon ; Kang, Sunghoon ; Kim, Jinsol ; Kim, Jeongha ; Jung, Jinsun ; Taira, Ricky</creatorcontrib><description>This study aims to facilitate the creation of quality standardized nursing statements in South Korea's hospitals using algorithmic generation based on the International Classifications of Nursing Practice (ICNP) and evaluation through Large Language Models.
We algorithmically generated 15 972 statements related to acute respiratory care using 117 concepts and concept composition models of ICNP. Human reviewers, Generative Pre-trained Transformers 4.0 (GPT-4.0), and Bio_Clinical Bidirectional Encoder Representations from Transformers (BERT) evaluated the generated statements for validity. The evaluation by GPT-4.0 and Bio_ClinicalBERT was conducted with and without contextual information and training.
Of the generated statements, 2207 were deemed valid by expert reviewers. GPT-4.0 showed a zero-shot AUC of 0.857, which aggravated with contextual information. Bio_ClinicalBERT, after training, significantly improved, reaching an AUC of 0.998.
Bio_ClinicalBERT effectively validates auto-generated nursing statements, offering a promising solution to enhance and streamline healthcare documentation processes.</description><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1093/jamia/ocae070</identifier><identifier>PMID: 38630586</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2024-05, Vol.31 (6), p.1397-1403</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-b7e0e175538a1d6352880b554b442c3c45a43d2c0714e4404791f294cd0010843</cites><orcidid>0000-0002-9993-5062 ; 0000-0002-5931-7286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38630586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyeoneui</creatorcontrib><creatorcontrib>Park, Hyewon</creatorcontrib><creatorcontrib>Kang, Sunghoon</creatorcontrib><creatorcontrib>Kim, Jinsol</creatorcontrib><creatorcontrib>Kim, Jeongha</creatorcontrib><creatorcontrib>Jung, Jinsun</creatorcontrib><creatorcontrib>Taira, Ricky</creatorcontrib><title>Evaluating the validity of the nursing statements algorithmically generated based on the International Classifications of Nursing Practice for respiratory nursing care using large language models</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>This study aims to facilitate the creation of quality standardized nursing statements in South Korea's hospitals using algorithmic generation based on the International Classifications of Nursing Practice (ICNP) and evaluation through Large Language Models.
We algorithmically generated 15 972 statements related to acute respiratory care using 117 concepts and concept composition models of ICNP. Human reviewers, Generative Pre-trained Transformers 4.0 (GPT-4.0), and Bio_Clinical Bidirectional Encoder Representations from Transformers (BERT) evaluated the generated statements for validity. The evaluation by GPT-4.0 and Bio_ClinicalBERT was conducted with and without contextual information and training.
Of the generated statements, 2207 were deemed valid by expert reviewers. GPT-4.0 showed a zero-shot AUC of 0.857, which aggravated with contextual information. Bio_ClinicalBERT, after training, significantly improved, reaching an AUC of 0.998.
Bio_ClinicalBERT effectively validates auto-generated nursing statements, offering a promising solution to enhance and streamline healthcare documentation processes.</description><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kU1v1DAQhi0EoqVw5Ip85BLqzzg5olWBShVwAIlbNHEmqSvHXmwHaX8ffwzvdullPON55xnLLyFvOfvAWS-vH2B1cB0tIDPsGbnkWpimN-rX85qz1jSaCXNBXuX8wBhvhdQvyYXsWsl0116Svzd_wG9QXFhouUdaKze5cqBxPtVhS_nYywUKrhhKpuCXmFy5X50F7w90wYCpdic6Qq4xhtPkbSiYQiXHAJ7uPOTs5jpyvMhH_Ncz-nsCW5xFOsdEE-a9q7SYDk-7LSSk2yn1kBasMSwb1GSNE_r8mryYwWd8cz6vyM9PNz92X5q7b59vdx_vGitUX5rRIENutJYd8KmVWnQdG7VWo1LCSqs0KDkJywxXqBRTpuez6JWd6sexTskr8v6Ru0_x94a5DKvLFn19DsYtD5IpLqTgqqvS5lFqU8w54Tzsk1shHQbOhqNvw8m34exb1b87o7dxxelJ_d8o-Q-Cw5qV</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Kim, Hyeoneui</creator><creator>Park, Hyewon</creator><creator>Kang, Sunghoon</creator><creator>Kim, Jinsol</creator><creator>Kim, Jeongha</creator><creator>Jung, Jinsun</creator><creator>Taira, Ricky</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9993-5062</orcidid><orcidid>https://orcid.org/0000-0002-5931-7286</orcidid></search><sort><creationdate>20240520</creationdate><title>Evaluating the validity of the nursing statements algorithmically generated based on the International Classifications of Nursing Practice for respiratory nursing care using large language models</title><author>Kim, Hyeoneui ; Park, Hyewon ; Kang, Sunghoon ; Kim, Jinsol ; Kim, Jeongha ; Jung, Jinsun ; Taira, Ricky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b7e0e175538a1d6352880b554b442c3c45a43d2c0714e4404791f294cd0010843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyeoneui</creatorcontrib><creatorcontrib>Park, Hyewon</creatorcontrib><creatorcontrib>Kang, Sunghoon</creatorcontrib><creatorcontrib>Kim, Jinsol</creatorcontrib><creatorcontrib>Kim, Jeongha</creatorcontrib><creatorcontrib>Jung, Jinsun</creatorcontrib><creatorcontrib>Taira, Ricky</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyeoneui</au><au>Park, Hyewon</au><au>Kang, Sunghoon</au><au>Kim, Jinsol</au><au>Kim, Jeongha</au><au>Jung, Jinsun</au><au>Taira, Ricky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the validity of the nursing statements algorithmically generated based on the International Classifications of Nursing Practice for respiratory nursing care using large language models</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2024-05-20</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><spage>1397</spage><epage>1403</epage><pages>1397-1403</pages><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>This study aims to facilitate the creation of quality standardized nursing statements in South Korea's hospitals using algorithmic generation based on the International Classifications of Nursing Practice (ICNP) and evaluation through Large Language Models.
We algorithmically generated 15 972 statements related to acute respiratory care using 117 concepts and concept composition models of ICNP. Human reviewers, Generative Pre-trained Transformers 4.0 (GPT-4.0), and Bio_Clinical Bidirectional Encoder Representations from Transformers (BERT) evaluated the generated statements for validity. The evaluation by GPT-4.0 and Bio_ClinicalBERT was conducted with and without contextual information and training.
Of the generated statements, 2207 were deemed valid by expert reviewers. GPT-4.0 showed a zero-shot AUC of 0.857, which aggravated with contextual information. Bio_ClinicalBERT, after training, significantly improved, reaching an AUC of 0.998.
Bio_ClinicalBERT effectively validates auto-generated nursing statements, offering a promising solution to enhance and streamline healthcare documentation processes.</abstract><cop>England</cop><pmid>38630586</pmid><doi>10.1093/jamia/ocae070</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9993-5062</orcidid><orcidid>https://orcid.org/0000-0002-5931-7286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1067-5027 |
ispartof | Journal of the American Medical Informatics Association : JAMIA, 2024-05, Vol.31 (6), p.1397-1403 |
issn | 1067-5027 1527-974X |
language | eng |
recordid | cdi_proquest_miscellaneous_3041232148 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Evaluating the validity of the nursing statements algorithmically generated based on the International Classifications of Nursing Practice for respiratory nursing care using large language models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20validity%20of%20the%20nursing%20statements%20algorithmically%20generated%20based%20on%20the%20International%20Classifications%20of%20Nursing%20Practice%20for%20respiratory%20nursing%20care%20using%20large%20language%20models&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Kim,%20Hyeoneui&rft.date=2024-05-20&rft.volume=31&rft.issue=6&rft.spage=1397&rft.epage=1403&rft.pages=1397-1403&rft.issn=1067-5027&rft.eissn=1527-974X&rft_id=info:doi/10.1093/jamia/ocae070&rft_dat=%3Cproquest_cross%3E3041232148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041232148&rft_id=info:pmid/38630586&rfr_iscdi=true |