Semantic uncertainty Guided Cross-Transformer for enhanced macular edema segmentation in OCT images

Macular edema, a prevalent ocular complication observed in various retinal diseases, can lead to significant vision loss or blindness, necessitating accurate and timely diagnosis. Despite the potential of deep learning for segmentation of macular edema, challenges persist in accurately identifying l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-05, Vol.174, p.108458, Article 108458
Hauptverfasser: Liu, Hui, Gao, Wenteng, Yang, Lei, Wu, Di, Zhao, Dehan, Chen, Kun, Liu, Jicheng, Ye, Yu, Xu, Ronald X., Sun, Mingzhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macular edema, a prevalent ocular complication observed in various retinal diseases, can lead to significant vision loss or blindness, necessitating accurate and timely diagnosis. Despite the potential of deep learning for segmentation of macular edema, challenges persist in accurately identifying lesion boundaries, especially in low-contrast and noisy regions, and in distinguishing between Inner Retinal Fluid (IRF), Sub-Retinal Fluid (SRF), and Pigment Epithelial Detachment (PED) lesions. To address these challenges, we present a novel approach, termed Semantic Uncertainty Guided Cross-Transformer Network (SuGCTNet), for the simultaneous segmentation of multi-class macular edema. Our proposed method comprises two key components, the semantic uncertainty guided attention module (SuGAM) and the Cross-Transformer module (CTM). The SuGAM module utilizes semantic uncertainty to allocate additional attention to regions with semantic ambiguity, improves the segmentation performance of these challenging areas. On the other hand, the CTM module capitalizes on both uncertainty information and multi-scale image features to enhance the overall continuity of the segmentation process, effectively minimizing feature confusion among different lesion types. Rigorous evaluation on public datasets and various OCT imaging device data demonstrates the superior performance of our proposed method compared to state-of-the-art approaches, highlighting its potential as a valuable tool for improving the accuracy and reproducibility of macular edema segmentation in clinical settings, and ultimately aiding in the early detection and diagnosis of macular edema-related diseases and associated retinal conditions. •Introducing SuGCTNet, utilizing semantic uncertainty to enhance segmentation accuracy and robustness.•SuGAM is proposed to enhance segmentation in challenging regions.•We introduced a Cross-Transformer module aimed at improving segmentation continuity and reducing confusion among different types of lesions.
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2024.108458