MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis

MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees ( Apis mellifera ), is the primary food of queen bees and plays a crucial role in their development. However, little is kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional & integrative genomics 2023-09, Vol.23 (3), p.200-200, Article 200
Hauptverfasser: Saadeldin, Islam M., Tanga, Bereket Molla, Bang, Seonggyu, Maigoro, Abdulkadir Y., Kang, Heejae, Cha, Dabin, Lee, Soojin, Lee, Sanghoon, Cho, Jongki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 3
container_start_page 200
container_title Functional & integrative genomics
container_volume 23
creator Saadeldin, Islam M.
Tanga, Bereket Molla
Bang, Seonggyu
Maigoro, Abdulkadir Y.
Kang, Heejae
Cha, Dabin
Lee, Soojin
Lee, Sanghoon
Cho, Jongki
description MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees ( Apis mellifera ), is the primary food of queen bees and plays a crucial role in their development. However, little is known about the microRNA (miRNAs) content of royal jelly and their potential functions. In this study, we isolated extracellular vesicles from the royal jelly of 36 samples through sequential centrifugation and targeted nanofiltration and performed high-throughput sequencing to identify and quantify the miRNA content of honeybee royal jelly extracellular vesicles (RJEVs). We found a total of 29 known mature miRNAs and 17 novel miRNAs. Through bioinformatic analysis, we identified several potential target genes of the miRNAs present in royal jelly, including those involved in developmental processes and cell differentiation. To investigate the potential roles of RJEVs in cell viability, RJEVs were supplemented to apoptotic porcine kidney fibroblasts induced by ethanol 6% exposure for 30 min. TUNEL assay showed a significant reduction in the apoptosis percentage after RJEV supplementation when compared with the non-supplemented control group. Moreover, the wound healing assay performed on the apoptotic cells showed a rapid healing capacity of RJEV-supplemented cells compared to the control group. We observed a significant reduction in the expression of the miRNA target genes such as FAM131B, ZEB1, COL5A1, TRIB2, YBX3, MAP2, CTNNA1, and ADAMTS9 suggesting that RJEVs may regulate the target gene expression associated with cellular motility and cell viability. Moreover, RJEVs reduced the expression of apoptotic genes (CASP3, TP53, BAX, and BAK), while significantly increasing the expression of anti-apoptotic genes (BCL2 and BCL-XL). Our findings provide the first comprehensive analysis of the miRNA content of RJEVs and suggest a potential role for these vesicles in the regulation of gene expression and cell survival as well as augmenting cell resurrection or anastasis.
doi_str_mv 10.1007/s10142-023-01126-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040484194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825510817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b1efcc71485584645cdc397c0e7bef62288db7c4deeb329d3b8a38fca3442b4c3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaT7aP9BDEOTSixN9jNfSMYS0CaQphBR6E7I8TrV4LUeyl-4tPz3ybppCD-lJA_PMI41eQj5xdsIZq04TZxxEwYQsGOdiUeg3ZJ-DVEWlQb19qeXPPXKQ0pIxVjIt35M9WQkFSrN98vjNuxhub87oEEPrO9_f09DSGDa2o0vsug3F32O0LpdTZyNdY_Kuw0Rt39DxF_pIhzBiP_o8EEOH1Pd0puna2zoLx80WjbjGmGb9tmmHMIwh-fSBvGttl_Dj83lIfny5uDu_LK6_f706P7suHDA1FjXH1rmKgypLBQsoXeOkrhzDqsZ2IYRSTV05aBBrKXQja2Wlap2VAKIGJw_J55037_kwYRrNyqf5KbbHMCUjGTBQwDX8FxVKSNAKSp3R43_QZZhinxeZqbLkTPEqU2JH5a9OKWJrhuhXNm4MZ2aO0uyiNDlKs43SzOqjZ_VUr7B5GfmTXQbkDki51d9j_Hv3K9onEWqrXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825510817</pqid></control><display><type>article</type><title>MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis</title><source>Springer Nature - Complete Springer Journals</source><creator>Saadeldin, Islam M. ; Tanga, Bereket Molla ; Bang, Seonggyu ; Maigoro, Abdulkadir Y. ; Kang, Heejae ; Cha, Dabin ; Lee, Soojin ; Lee, Sanghoon ; Cho, Jongki</creator><creatorcontrib>Saadeldin, Islam M. ; Tanga, Bereket Molla ; Bang, Seonggyu ; Maigoro, Abdulkadir Y. ; Kang, Heejae ; Cha, Dabin ; Lee, Soojin ; Lee, Sanghoon ; Cho, Jongki</creatorcontrib><description>MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees ( Apis mellifera ), is the primary food of queen bees and plays a crucial role in their development. However, little is known about the microRNA (miRNAs) content of royal jelly and their potential functions. In this study, we isolated extracellular vesicles from the royal jelly of 36 samples through sequential centrifugation and targeted nanofiltration and performed high-throughput sequencing to identify and quantify the miRNA content of honeybee royal jelly extracellular vesicles (RJEVs). We found a total of 29 known mature miRNAs and 17 novel miRNAs. Through bioinformatic analysis, we identified several potential target genes of the miRNAs present in royal jelly, including those involved in developmental processes and cell differentiation. To investigate the potential roles of RJEVs in cell viability, RJEVs were supplemented to apoptotic porcine kidney fibroblasts induced by ethanol 6% exposure for 30 min. TUNEL assay showed a significant reduction in the apoptosis percentage after RJEV supplementation when compared with the non-supplemented control group. Moreover, the wound healing assay performed on the apoptotic cells showed a rapid healing capacity of RJEV-supplemented cells compared to the control group. We observed a significant reduction in the expression of the miRNA target genes such as FAM131B, ZEB1, COL5A1, TRIB2, YBX3, MAP2, CTNNA1, and ADAMTS9 suggesting that RJEVs may regulate the target gene expression associated with cellular motility and cell viability. Moreover, RJEVs reduced the expression of apoptotic genes (CASP3, TP53, BAX, and BAK), while significantly increasing the expression of anti-apoptotic genes (BCL2 and BCL-XL). Our findings provide the first comprehensive analysis of the miRNA content of RJEVs and suggest a potential role for these vesicles in the regulation of gene expression and cell survival as well as augmenting cell resurrection or anastasis.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-023-01126-9</identifier><identifier>PMID: 37284890</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Apis mellifera ; Apoptosis ; Bcl-x protein ; Bees ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Cell Biology ; Cell differentiation ; cell movement ; Cell survival ; Cell viability ; Centrifugation ; Epigenetics ; ethanol ; Extracellular vesicles ; Fibroblasts ; Gene expression ; gene expression regulation ; genomics ; honey bees ; Kidneys ; Life Sciences ; Microbial Genetics and Genomics ; microRNA ; MicroRNAs ; miRNA ; Nanofiltration ; Next-generation sequencing ; Non-coding RNA ; Original Article ; p53 Protein ; Plant Genetics and Genomics ; Royal jelly ; swine ; Wound healing</subject><ispartof>Functional &amp; integrative genomics, 2023-09, Vol.23 (3), p.200-200, Article 200</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b1efcc71485584645cdc397c0e7bef62288db7c4deeb329d3b8a38fca3442b4c3</citedby><cites>FETCH-LOGICAL-c408t-b1efcc71485584645cdc397c0e7bef62288db7c4deeb329d3b8a38fca3442b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-023-01126-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-023-01126-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37284890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saadeldin, Islam M.</creatorcontrib><creatorcontrib>Tanga, Bereket Molla</creatorcontrib><creatorcontrib>Bang, Seonggyu</creatorcontrib><creatorcontrib>Maigoro, Abdulkadir Y.</creatorcontrib><creatorcontrib>Kang, Heejae</creatorcontrib><creatorcontrib>Cha, Dabin</creatorcontrib><creatorcontrib>Lee, Soojin</creatorcontrib><creatorcontrib>Lee, Sanghoon</creatorcontrib><creatorcontrib>Cho, Jongki</creatorcontrib><title>MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis</title><title>Functional &amp; integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees ( Apis mellifera ), is the primary food of queen bees and plays a crucial role in their development. However, little is known about the microRNA (miRNAs) content of royal jelly and their potential functions. In this study, we isolated extracellular vesicles from the royal jelly of 36 samples through sequential centrifugation and targeted nanofiltration and performed high-throughput sequencing to identify and quantify the miRNA content of honeybee royal jelly extracellular vesicles (RJEVs). We found a total of 29 known mature miRNAs and 17 novel miRNAs. Through bioinformatic analysis, we identified several potential target genes of the miRNAs present in royal jelly, including those involved in developmental processes and cell differentiation. To investigate the potential roles of RJEVs in cell viability, RJEVs were supplemented to apoptotic porcine kidney fibroblasts induced by ethanol 6% exposure for 30 min. TUNEL assay showed a significant reduction in the apoptosis percentage after RJEV supplementation when compared with the non-supplemented control group. Moreover, the wound healing assay performed on the apoptotic cells showed a rapid healing capacity of RJEV-supplemented cells compared to the control group. We observed a significant reduction in the expression of the miRNA target genes such as FAM131B, ZEB1, COL5A1, TRIB2, YBX3, MAP2, CTNNA1, and ADAMTS9 suggesting that RJEVs may regulate the target gene expression associated with cellular motility and cell viability. Moreover, RJEVs reduced the expression of apoptotic genes (CASP3, TP53, BAX, and BAK), while significantly increasing the expression of anti-apoptotic genes (BCL2 and BCL-XL). Our findings provide the first comprehensive analysis of the miRNA content of RJEVs and suggest a potential role for these vesicles in the regulation of gene expression and cell survival as well as augmenting cell resurrection or anastasis.</description><subject>Animal Genetics and Genomics</subject><subject>Apis mellifera</subject><subject>Apoptosis</subject><subject>Bcl-x protein</subject><subject>Bees</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell differentiation</subject><subject>cell movement</subject><subject>Cell survival</subject><subject>Cell viability</subject><subject>Centrifugation</subject><subject>Epigenetics</subject><subject>ethanol</subject><subject>Extracellular vesicles</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>genomics</subject><subject>honey bees</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>microRNA</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Nanofiltration</subject><subject>Next-generation sequencing</subject><subject>Non-coding RNA</subject><subject>Original Article</subject><subject>p53 Protein</subject><subject>Plant Genetics and Genomics</subject><subject>Royal jelly</subject><subject>swine</subject><subject>Wound healing</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1r3DAQhkVpaT7aP9BDEOTSixN9jNfSMYS0CaQphBR6E7I8TrV4LUeyl-4tPz3ybppCD-lJA_PMI41eQj5xdsIZq04TZxxEwYQsGOdiUeg3ZJ-DVEWlQb19qeXPPXKQ0pIxVjIt35M9WQkFSrN98vjNuxhub87oEEPrO9_f09DSGDa2o0vsug3F32O0LpdTZyNdY_Kuw0Rt39DxF_pIhzBiP_o8EEOH1Pd0puna2zoLx80WjbjGmGb9tmmHMIwh-fSBvGttl_Dj83lIfny5uDu_LK6_f706P7suHDA1FjXH1rmKgypLBQsoXeOkrhzDqsZ2IYRSTV05aBBrKXQja2Wlap2VAKIGJw_J55037_kwYRrNyqf5KbbHMCUjGTBQwDX8FxVKSNAKSp3R43_QZZhinxeZqbLkTPEqU2JH5a9OKWJrhuhXNm4MZ2aO0uyiNDlKs43SzOqjZ_VUr7B5GfmTXQbkDki51d9j_Hv3K9onEWqrXA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Saadeldin, Islam M.</creator><creator>Tanga, Bereket Molla</creator><creator>Bang, Seonggyu</creator><creator>Maigoro, Abdulkadir Y.</creator><creator>Kang, Heejae</creator><creator>Cha, Dabin</creator><creator>Lee, Soojin</creator><creator>Lee, Sanghoon</creator><creator>Cho, Jongki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230901</creationdate><title>MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis</title><author>Saadeldin, Islam M. ; Tanga, Bereket Molla ; Bang, Seonggyu ; Maigoro, Abdulkadir Y. ; Kang, Heejae ; Cha, Dabin ; Lee, Soojin ; Lee, Sanghoon ; Cho, Jongki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b1efcc71485584645cdc397c0e7bef62288db7c4deeb329d3b8a38fca3442b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal Genetics and Genomics</topic><topic>Apis mellifera</topic><topic>Apoptosis</topic><topic>Bcl-x protein</topic><topic>Bees</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell differentiation</topic><topic>cell movement</topic><topic>Cell survival</topic><topic>Cell viability</topic><topic>Centrifugation</topic><topic>Epigenetics</topic><topic>ethanol</topic><topic>Extracellular vesicles</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>genomics</topic><topic>honey bees</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>microRNA</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Nanofiltration</topic><topic>Next-generation sequencing</topic><topic>Non-coding RNA</topic><topic>Original Article</topic><topic>p53 Protein</topic><topic>Plant Genetics and Genomics</topic><topic>Royal jelly</topic><topic>swine</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadeldin, Islam M.</creatorcontrib><creatorcontrib>Tanga, Bereket Molla</creatorcontrib><creatorcontrib>Bang, Seonggyu</creatorcontrib><creatorcontrib>Maigoro, Abdulkadir Y.</creatorcontrib><creatorcontrib>Kang, Heejae</creatorcontrib><creatorcontrib>Cha, Dabin</creatorcontrib><creatorcontrib>Lee, Soojin</creatorcontrib><creatorcontrib>Lee, Sanghoon</creatorcontrib><creatorcontrib>Cho, Jongki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Functional &amp; integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadeldin, Islam M.</au><au>Tanga, Bereket Molla</au><au>Bang, Seonggyu</au><au>Maigoro, Abdulkadir Y.</au><au>Kang, Heejae</au><au>Cha, Dabin</au><au>Lee, Soojin</au><au>Lee, Sanghoon</au><au>Cho, Jongki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis</atitle><jtitle>Functional &amp; integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>200</spage><epage>200</epage><pages>200-200</pages><artnum>200</artnum><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees ( Apis mellifera ), is the primary food of queen bees and plays a crucial role in their development. However, little is known about the microRNA (miRNAs) content of royal jelly and their potential functions. In this study, we isolated extracellular vesicles from the royal jelly of 36 samples through sequential centrifugation and targeted nanofiltration and performed high-throughput sequencing to identify and quantify the miRNA content of honeybee royal jelly extracellular vesicles (RJEVs). We found a total of 29 known mature miRNAs and 17 novel miRNAs. Through bioinformatic analysis, we identified several potential target genes of the miRNAs present in royal jelly, including those involved in developmental processes and cell differentiation. To investigate the potential roles of RJEVs in cell viability, RJEVs were supplemented to apoptotic porcine kidney fibroblasts induced by ethanol 6% exposure for 30 min. TUNEL assay showed a significant reduction in the apoptosis percentage after RJEV supplementation when compared with the non-supplemented control group. Moreover, the wound healing assay performed on the apoptotic cells showed a rapid healing capacity of RJEV-supplemented cells compared to the control group. We observed a significant reduction in the expression of the miRNA target genes such as FAM131B, ZEB1, COL5A1, TRIB2, YBX3, MAP2, CTNNA1, and ADAMTS9 suggesting that RJEVs may regulate the target gene expression associated with cellular motility and cell viability. Moreover, RJEVs reduced the expression of apoptotic genes (CASP3, TP53, BAX, and BAK), while significantly increasing the expression of anti-apoptotic genes (BCL2 and BCL-XL). Our findings provide the first comprehensive analysis of the miRNA content of RJEVs and suggest a potential role for these vesicles in the regulation of gene expression and cell survival as well as augmenting cell resurrection or anastasis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37284890</pmid><doi>10.1007/s10142-023-01126-9</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-793X
ispartof Functional & integrative genomics, 2023-09, Vol.23 (3), p.200-200, Article 200
issn 1438-793X
1438-7948
language eng
recordid cdi_proquest_miscellaneous_3040484194
source Springer Nature - Complete Springer Journals
subjects Animal Genetics and Genomics
Apis mellifera
Apoptosis
Bcl-x protein
Bees
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Cell Biology
Cell differentiation
cell movement
Cell survival
Cell viability
Centrifugation
Epigenetics
ethanol
Extracellular vesicles
Fibroblasts
Gene expression
gene expression regulation
genomics
honey bees
Kidneys
Life Sciences
Microbial Genetics and Genomics
microRNA
MicroRNAs
miRNA
Nanofiltration
Next-generation sequencing
Non-coding RNA
Original Article
p53 Protein
Plant Genetics and Genomics
Royal jelly
swine
Wound healing
title MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20profiling%20of%20royal%20jelly%20extracellular%20vesicles%20and%20their%20potential%20role%20in%20cell%20viability%20and%20reversing%20cell%20apoptosis&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Saadeldin,%20Islam%20M.&rft.date=2023-09-01&rft.volume=23&rft.issue=3&rft.spage=200&rft.epage=200&rft.pages=200-200&rft.artnum=200&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-023-01126-9&rft_dat=%3Cproquest_cross%3E2825510817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825510817&rft_id=info:pmid/37284890&rfr_iscdi=true