Development and characterization of a plant-derived norovirus-like particle vaccine
Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic,...
Gespeichert in:
Veröffentlicht in: | Vaccine 2023-09, Vol.41 (41), p.6008-6016 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6016 |
---|---|
container_issue | 41 |
container_start_page | 6008 |
container_title | Vaccine |
container_volume | 41 |
creator | Shapiro, Janna R. Andreani, Guadalupe Dubé, Charlotte Berubé, Mélanie Bussière, Diane Couture, Manon M.-J. Dargis, Michèle Hendin, Hilary E. Landry, Nathalie Lavoie, Pierre-Olivier Pillet, Stéphane Ward, Brian J. D'Aoust, Marc-André Trépanier, Sonia |
description | Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains.
NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice.
Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response.
The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses. |
doi_str_mv | 10.1016/j.vaccine.2023.08.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040484044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X23009684</els_id><sourcerecordid>2857846677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</originalsourceid><addsrcrecordid>eNqFkU1LJDEQhoOs4Kz6E4SGveyl28pHJ5nTIq5fIHhQwVtIp6sxY0-nTXoa9NebYebkxUNRUDz11sdLyBmFigKV56tqts75ASsGjFegK-DygCyoVrxkNdW_yAKYFKWg8HJEfqe0AoCa0-WCPP7HGfswrnGYCju0hXu10boJo_-0kw9DEbrCFmNvh6lsc3XGthhCDLOPm1T2_g2L0cbJux6L_Ron5LCzfcLTfT4mz9dXT5e35f3Dzd3lxX3pBPCpRCll43RbN66lTDWa1Z1tnGIaBV82uhPMKUsRauyUtawBTjsmpVLKaUYZPyZ_d7pjDO8bTJNZ--Swz7ti2CTDQYDQOcSPKNO10mKrndE_39BV2MQhH5IpKYEvOd_OrneUiyGliJ0Zo1_b-GEomK0rZmX27zBbVwxok13Jff92fZgfM3uMJjmPg8PWR3STaYP_QeELMaSYSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866039332</pqid></control><display><type>article</type><title>Development and characterization of a plant-derived norovirus-like particle vaccine</title><source>Elsevier ScienceDirect Journals</source><creator>Shapiro, Janna R. ; Andreani, Guadalupe ; Dubé, Charlotte ; Berubé, Mélanie ; Bussière, Diane ; Couture, Manon M.-J. ; Dargis, Michèle ; Hendin, Hilary E. ; Landry, Nathalie ; Lavoie, Pierre-Olivier ; Pillet, Stéphane ; Ward, Brian J. ; D'Aoust, Marc-André ; Trépanier, Sonia</creator><creatorcontrib>Shapiro, Janna R. ; Andreani, Guadalupe ; Dubé, Charlotte ; Berubé, Mélanie ; Bussière, Diane ; Couture, Manon M.-J. ; Dargis, Michèle ; Hendin, Hilary E. ; Landry, Nathalie ; Lavoie, Pierre-Olivier ; Pillet, Stéphane ; Ward, Brian J. ; D'Aoust, Marc-André ; Trépanier, Sonia</creatorcontrib><description>Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains.
NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice.
Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response.
The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2023.08.036</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agrobacterium tumefaciens ; Aluminum ; Aluminum hydroxide ; Animal model ; Animal models ; animals ; Antibodies ; Antigens ; Biomass ; Blood groups ; Chromatography ; Cloning ; Diarrhea ; feces ; Genetic diversity ; genetic variation ; genotype ; Genotypes ; Hepatitis ; human diseases ; Immunogenicity ; Immunoglobulin A ; Immunoglobulin G ; Infections ; Influenza ; intramuscular injection ; Lymphocytes ; Lymphocytes T ; Mucosal immunity ; Nicotiana benthamiana ; Norovirus ; Oral administration ; Plants ; Proteins ; Rabbits ; Severe acute respiratory syndrome coronavirus 2 ; Toxicity ; Transmission electron microscopy ; vaccination ; Vaccine ; Vaccine development ; Vaccines ; Vectors (Biology) ; Virions ; Virus-like particle ; Virus-like particles ; γ-Interferon</subject><ispartof>Vaccine, 2023-09, Vol.41 (41), p.6008-6016</ispartof><rights>2023</rights><rights>Copyright Elsevier Limited Sep 22, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</citedby><cites>FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</cites><orcidid>0000-0002-0205-5692 ; 0000-0003-0283-372X ; 0000-0001-9994-2417 ; 0000-0003-3251-958X ; 0000-0001-8088-2506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0264410X23009684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shapiro, Janna R.</creatorcontrib><creatorcontrib>Andreani, Guadalupe</creatorcontrib><creatorcontrib>Dubé, Charlotte</creatorcontrib><creatorcontrib>Berubé, Mélanie</creatorcontrib><creatorcontrib>Bussière, Diane</creatorcontrib><creatorcontrib>Couture, Manon M.-J.</creatorcontrib><creatorcontrib>Dargis, Michèle</creatorcontrib><creatorcontrib>Hendin, Hilary E.</creatorcontrib><creatorcontrib>Landry, Nathalie</creatorcontrib><creatorcontrib>Lavoie, Pierre-Olivier</creatorcontrib><creatorcontrib>Pillet, Stéphane</creatorcontrib><creatorcontrib>Ward, Brian J.</creatorcontrib><creatorcontrib>D'Aoust, Marc-André</creatorcontrib><creatorcontrib>Trépanier, Sonia</creatorcontrib><title>Development and characterization of a plant-derived norovirus-like particle vaccine</title><title>Vaccine</title><description>Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains.
NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice.
Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response.
The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.</description><subject>Agrobacterium tumefaciens</subject><subject>Aluminum</subject><subject>Aluminum hydroxide</subject><subject>Animal model</subject><subject>Animal models</subject><subject>animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Biomass</subject><subject>Blood groups</subject><subject>Chromatography</subject><subject>Cloning</subject><subject>Diarrhea</subject><subject>feces</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>genotype</subject><subject>Genotypes</subject><subject>Hepatitis</subject><subject>human diseases</subject><subject>Immunogenicity</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin G</subject><subject>Infections</subject><subject>Influenza</subject><subject>intramuscular injection</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mucosal immunity</subject><subject>Nicotiana benthamiana</subject><subject>Norovirus</subject><subject>Oral administration</subject><subject>Plants</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Toxicity</subject><subject>Transmission electron microscopy</subject><subject>vaccination</subject><subject>Vaccine</subject><subject>Vaccine development</subject><subject>Vaccines</subject><subject>Vectors (Biology)</subject><subject>Virions</subject><subject>Virus-like particle</subject><subject>Virus-like particles</subject><subject>γ-Interferon</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LJDEQhoOs4Kz6E4SGveyl28pHJ5nTIq5fIHhQwVtIp6sxY0-nTXoa9NebYebkxUNRUDz11sdLyBmFigKV56tqts75ASsGjFegK-DygCyoVrxkNdW_yAKYFKWg8HJEfqe0AoCa0-WCPP7HGfswrnGYCju0hXu10boJo_-0kw9DEbrCFmNvh6lsc3XGthhCDLOPm1T2_g2L0cbJux6L_Ron5LCzfcLTfT4mz9dXT5e35f3Dzd3lxX3pBPCpRCll43RbN66lTDWa1Z1tnGIaBV82uhPMKUsRauyUtawBTjsmpVLKaUYZPyZ_d7pjDO8bTJNZ--Swz7ti2CTDQYDQOcSPKNO10mKrndE_39BV2MQhH5IpKYEvOd_OrneUiyGliJ0Zo1_b-GEomK0rZmX27zBbVwxok13Jff92fZgfM3uMJjmPg8PWR3STaYP_QeELMaSYSw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Shapiro, Janna R.</creator><creator>Andreani, Guadalupe</creator><creator>Dubé, Charlotte</creator><creator>Berubé, Mélanie</creator><creator>Bussière, Diane</creator><creator>Couture, Manon M.-J.</creator><creator>Dargis, Michèle</creator><creator>Hendin, Hilary E.</creator><creator>Landry, Nathalie</creator><creator>Lavoie, Pierre-Olivier</creator><creator>Pillet, Stéphane</creator><creator>Ward, Brian J.</creator><creator>D'Aoust, Marc-André</creator><creator>Trépanier, Sonia</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0205-5692</orcidid><orcidid>https://orcid.org/0000-0003-0283-372X</orcidid><orcidid>https://orcid.org/0000-0001-9994-2417</orcidid><orcidid>https://orcid.org/0000-0003-3251-958X</orcidid><orcidid>https://orcid.org/0000-0001-8088-2506</orcidid></search><sort><creationdate>20230922</creationdate><title>Development and characterization of a plant-derived norovirus-like particle vaccine</title><author>Shapiro, Janna R. ; Andreani, Guadalupe ; Dubé, Charlotte ; Berubé, Mélanie ; Bussière, Diane ; Couture, Manon M.-J. ; Dargis, Michèle ; Hendin, Hilary E. ; Landry, Nathalie ; Lavoie, Pierre-Olivier ; Pillet, Stéphane ; Ward, Brian J. ; D'Aoust, Marc-André ; Trépanier, Sonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agrobacterium tumefaciens</topic><topic>Aluminum</topic><topic>Aluminum hydroxide</topic><topic>Animal model</topic><topic>Animal models</topic><topic>animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Biomass</topic><topic>Blood groups</topic><topic>Chromatography</topic><topic>Cloning</topic><topic>Diarrhea</topic><topic>feces</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>genotype</topic><topic>Genotypes</topic><topic>Hepatitis</topic><topic>human diseases</topic><topic>Immunogenicity</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin G</topic><topic>Infections</topic><topic>Influenza</topic><topic>intramuscular injection</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mucosal immunity</topic><topic>Nicotiana benthamiana</topic><topic>Norovirus</topic><topic>Oral administration</topic><topic>Plants</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Toxicity</topic><topic>Transmission electron microscopy</topic><topic>vaccination</topic><topic>Vaccine</topic><topic>Vaccine development</topic><topic>Vaccines</topic><topic>Vectors (Biology)</topic><topic>Virions</topic><topic>Virus-like particle</topic><topic>Virus-like particles</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, Janna R.</creatorcontrib><creatorcontrib>Andreani, Guadalupe</creatorcontrib><creatorcontrib>Dubé, Charlotte</creatorcontrib><creatorcontrib>Berubé, Mélanie</creatorcontrib><creatorcontrib>Bussière, Diane</creatorcontrib><creatorcontrib>Couture, Manon M.-J.</creatorcontrib><creatorcontrib>Dargis, Michèle</creatorcontrib><creatorcontrib>Hendin, Hilary E.</creatorcontrib><creatorcontrib>Landry, Nathalie</creatorcontrib><creatorcontrib>Lavoie, Pierre-Olivier</creatorcontrib><creatorcontrib>Pillet, Stéphane</creatorcontrib><creatorcontrib>Ward, Brian J.</creatorcontrib><creatorcontrib>D'Aoust, Marc-André</creatorcontrib><creatorcontrib>Trépanier, Sonia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, Janna R.</au><au>Andreani, Guadalupe</au><au>Dubé, Charlotte</au><au>Berubé, Mélanie</au><au>Bussière, Diane</au><au>Couture, Manon M.-J.</au><au>Dargis, Michèle</au><au>Hendin, Hilary E.</au><au>Landry, Nathalie</au><au>Lavoie, Pierre-Olivier</au><au>Pillet, Stéphane</au><au>Ward, Brian J.</au><au>D'Aoust, Marc-André</au><au>Trépanier, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and characterization of a plant-derived norovirus-like particle vaccine</atitle><jtitle>Vaccine</jtitle><date>2023-09-22</date><risdate>2023</risdate><volume>41</volume><issue>41</issue><spage>6008</spage><epage>6016</epage><pages>6008-6016</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains.
NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice.
Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response.
The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.vaccine.2023.08.036</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0205-5692</orcidid><orcidid>https://orcid.org/0000-0003-0283-372X</orcidid><orcidid>https://orcid.org/0000-0001-9994-2417</orcidid><orcidid>https://orcid.org/0000-0003-3251-958X</orcidid><orcidid>https://orcid.org/0000-0001-8088-2506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-410X |
ispartof | Vaccine, 2023-09, Vol.41 (41), p.6008-6016 |
issn | 0264-410X 1873-2518 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040484044 |
source | Elsevier ScienceDirect Journals |
subjects | Agrobacterium tumefaciens Aluminum Aluminum hydroxide Animal model Animal models animals Antibodies Antigens Biomass Blood groups Chromatography Cloning Diarrhea feces Genetic diversity genetic variation genotype Genotypes Hepatitis human diseases Immunogenicity Immunoglobulin A Immunoglobulin G Infections Influenza intramuscular injection Lymphocytes Lymphocytes T Mucosal immunity Nicotiana benthamiana Norovirus Oral administration Plants Proteins Rabbits Severe acute respiratory syndrome coronavirus 2 Toxicity Transmission electron microscopy vaccination Vaccine Vaccine development Vaccines Vectors (Biology) Virions Virus-like particle Virus-like particles γ-Interferon |
title | Development and characterization of a plant-derived norovirus-like particle vaccine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20characterization%20of%20a%20plant-derived%20norovirus-like%20particle%20vaccine&rft.jtitle=Vaccine&rft.au=Shapiro,%20Janna%20R.&rft.date=2023-09-22&rft.volume=41&rft.issue=41&rft.spage=6008&rft.epage=6016&rft.pages=6008-6016&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2023.08.036&rft_dat=%3Cproquest_cross%3E2857846677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866039332&rft_id=info:pmid/&rft_els_id=S0264410X23009684&rfr_iscdi=true |