Development and characterization of a plant-derived norovirus-like particle vaccine

Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2023-09, Vol.41 (41), p.6008-6016
Hauptverfasser: Shapiro, Janna R., Andreani, Guadalupe, Dubé, Charlotte, Berubé, Mélanie, Bussière, Diane, Couture, Manon M.-J., Dargis, Michèle, Hendin, Hilary E., Landry, Nathalie, Lavoie, Pierre-Olivier, Pillet, Stéphane, Ward, Brian J., D'Aoust, Marc-André, Trépanier, Sonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6016
container_issue 41
container_start_page 6008
container_title Vaccine
container_volume 41
creator Shapiro, Janna R.
Andreani, Guadalupe
Dubé, Charlotte
Berubé, Mélanie
Bussière, Diane
Couture, Manon M.-J.
Dargis, Michèle
Hendin, Hilary E.
Landry, Nathalie
Lavoie, Pierre-Olivier
Pillet, Stéphane
Ward, Brian J.
D'Aoust, Marc-André
Trépanier, Sonia
description Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.
doi_str_mv 10.1016/j.vaccine.2023.08.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040484044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X23009684</els_id><sourcerecordid>2857846677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</originalsourceid><addsrcrecordid>eNqFkU1LJDEQhoOs4Kz6E4SGveyl28pHJ5nTIq5fIHhQwVtIp6sxY0-nTXoa9NebYebkxUNRUDz11sdLyBmFigKV56tqts75ASsGjFegK-DygCyoVrxkNdW_yAKYFKWg8HJEfqe0AoCa0-WCPP7HGfswrnGYCju0hXu10boJo_-0kw9DEbrCFmNvh6lsc3XGthhCDLOPm1T2_g2L0cbJux6L_Ron5LCzfcLTfT4mz9dXT5e35f3Dzd3lxX3pBPCpRCll43RbN66lTDWa1Z1tnGIaBV82uhPMKUsRauyUtawBTjsmpVLKaUYZPyZ_d7pjDO8bTJNZ--Swz7ti2CTDQYDQOcSPKNO10mKrndE_39BV2MQhH5IpKYEvOd_OrneUiyGliJ0Zo1_b-GEomK0rZmX27zBbVwxok13Jff92fZgfM3uMJjmPg8PWR3STaYP_QeELMaSYSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866039332</pqid></control><display><type>article</type><title>Development and characterization of a plant-derived norovirus-like particle vaccine</title><source>Elsevier ScienceDirect Journals</source><creator>Shapiro, Janna R. ; Andreani, Guadalupe ; Dubé, Charlotte ; Berubé, Mélanie ; Bussière, Diane ; Couture, Manon M.-J. ; Dargis, Michèle ; Hendin, Hilary E. ; Landry, Nathalie ; Lavoie, Pierre-Olivier ; Pillet, Stéphane ; Ward, Brian J. ; D'Aoust, Marc-André ; Trépanier, Sonia</creator><creatorcontrib>Shapiro, Janna R. ; Andreani, Guadalupe ; Dubé, Charlotte ; Berubé, Mélanie ; Bussière, Diane ; Couture, Manon M.-J. ; Dargis, Michèle ; Hendin, Hilary E. ; Landry, Nathalie ; Lavoie, Pierre-Olivier ; Pillet, Stéphane ; Ward, Brian J. ; D'Aoust, Marc-André ; Trépanier, Sonia</creatorcontrib><description>Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2023.08.036</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agrobacterium tumefaciens ; Aluminum ; Aluminum hydroxide ; Animal model ; Animal models ; animals ; Antibodies ; Antigens ; Biomass ; Blood groups ; Chromatography ; Cloning ; Diarrhea ; feces ; Genetic diversity ; genetic variation ; genotype ; Genotypes ; Hepatitis ; human diseases ; Immunogenicity ; Immunoglobulin A ; Immunoglobulin G ; Infections ; Influenza ; intramuscular injection ; Lymphocytes ; Lymphocytes T ; Mucosal immunity ; Nicotiana benthamiana ; Norovirus ; Oral administration ; Plants ; Proteins ; Rabbits ; Severe acute respiratory syndrome coronavirus 2 ; Toxicity ; Transmission electron microscopy ; vaccination ; Vaccine ; Vaccine development ; Vaccines ; Vectors (Biology) ; Virions ; Virus-like particle ; Virus-like particles ; γ-Interferon</subject><ispartof>Vaccine, 2023-09, Vol.41 (41), p.6008-6016</ispartof><rights>2023</rights><rights>Copyright Elsevier Limited Sep 22, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</citedby><cites>FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</cites><orcidid>0000-0002-0205-5692 ; 0000-0003-0283-372X ; 0000-0001-9994-2417 ; 0000-0003-3251-958X ; 0000-0001-8088-2506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0264410X23009684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shapiro, Janna R.</creatorcontrib><creatorcontrib>Andreani, Guadalupe</creatorcontrib><creatorcontrib>Dubé, Charlotte</creatorcontrib><creatorcontrib>Berubé, Mélanie</creatorcontrib><creatorcontrib>Bussière, Diane</creatorcontrib><creatorcontrib>Couture, Manon M.-J.</creatorcontrib><creatorcontrib>Dargis, Michèle</creatorcontrib><creatorcontrib>Hendin, Hilary E.</creatorcontrib><creatorcontrib>Landry, Nathalie</creatorcontrib><creatorcontrib>Lavoie, Pierre-Olivier</creatorcontrib><creatorcontrib>Pillet, Stéphane</creatorcontrib><creatorcontrib>Ward, Brian J.</creatorcontrib><creatorcontrib>D'Aoust, Marc-André</creatorcontrib><creatorcontrib>Trépanier, Sonia</creatorcontrib><title>Development and characterization of a plant-derived norovirus-like particle vaccine</title><title>Vaccine</title><description>Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.</description><subject>Agrobacterium tumefaciens</subject><subject>Aluminum</subject><subject>Aluminum hydroxide</subject><subject>Animal model</subject><subject>Animal models</subject><subject>animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Biomass</subject><subject>Blood groups</subject><subject>Chromatography</subject><subject>Cloning</subject><subject>Diarrhea</subject><subject>feces</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>genotype</subject><subject>Genotypes</subject><subject>Hepatitis</subject><subject>human diseases</subject><subject>Immunogenicity</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin G</subject><subject>Infections</subject><subject>Influenza</subject><subject>intramuscular injection</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mucosal immunity</subject><subject>Nicotiana benthamiana</subject><subject>Norovirus</subject><subject>Oral administration</subject><subject>Plants</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Toxicity</subject><subject>Transmission electron microscopy</subject><subject>vaccination</subject><subject>Vaccine</subject><subject>Vaccine development</subject><subject>Vaccines</subject><subject>Vectors (Biology)</subject><subject>Virions</subject><subject>Virus-like particle</subject><subject>Virus-like particles</subject><subject>γ-Interferon</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LJDEQhoOs4Kz6E4SGveyl28pHJ5nTIq5fIHhQwVtIp6sxY0-nTXoa9NebYebkxUNRUDz11sdLyBmFigKV56tqts75ASsGjFegK-DygCyoVrxkNdW_yAKYFKWg8HJEfqe0AoCa0-WCPP7HGfswrnGYCju0hXu10boJo_-0kw9DEbrCFmNvh6lsc3XGthhCDLOPm1T2_g2L0cbJux6L_Ron5LCzfcLTfT4mz9dXT5e35f3Dzd3lxX3pBPCpRCll43RbN66lTDWa1Z1tnGIaBV82uhPMKUsRauyUtawBTjsmpVLKaUYZPyZ_d7pjDO8bTJNZ--Swz7ti2CTDQYDQOcSPKNO10mKrndE_39BV2MQhH5IpKYEvOd_OrneUiyGliJ0Zo1_b-GEomK0rZmX27zBbVwxok13Jff92fZgfM3uMJjmPg8PWR3STaYP_QeELMaSYSw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Shapiro, Janna R.</creator><creator>Andreani, Guadalupe</creator><creator>Dubé, Charlotte</creator><creator>Berubé, Mélanie</creator><creator>Bussière, Diane</creator><creator>Couture, Manon M.-J.</creator><creator>Dargis, Michèle</creator><creator>Hendin, Hilary E.</creator><creator>Landry, Nathalie</creator><creator>Lavoie, Pierre-Olivier</creator><creator>Pillet, Stéphane</creator><creator>Ward, Brian J.</creator><creator>D'Aoust, Marc-André</creator><creator>Trépanier, Sonia</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0205-5692</orcidid><orcidid>https://orcid.org/0000-0003-0283-372X</orcidid><orcidid>https://orcid.org/0000-0001-9994-2417</orcidid><orcidid>https://orcid.org/0000-0003-3251-958X</orcidid><orcidid>https://orcid.org/0000-0001-8088-2506</orcidid></search><sort><creationdate>20230922</creationdate><title>Development and characterization of a plant-derived norovirus-like particle vaccine</title><author>Shapiro, Janna R. ; Andreani, Guadalupe ; Dubé, Charlotte ; Berubé, Mélanie ; Bussière, Diane ; Couture, Manon M.-J. ; Dargis, Michèle ; Hendin, Hilary E. ; Landry, Nathalie ; Lavoie, Pierre-Olivier ; Pillet, Stéphane ; Ward, Brian J. ; D'Aoust, Marc-André ; Trépanier, Sonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e666bc8d5bcd127b825fabc728e439b8f42c7a1e05ef7aa2b031f266777c82123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agrobacterium tumefaciens</topic><topic>Aluminum</topic><topic>Aluminum hydroxide</topic><topic>Animal model</topic><topic>Animal models</topic><topic>animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Biomass</topic><topic>Blood groups</topic><topic>Chromatography</topic><topic>Cloning</topic><topic>Diarrhea</topic><topic>feces</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>genotype</topic><topic>Genotypes</topic><topic>Hepatitis</topic><topic>human diseases</topic><topic>Immunogenicity</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin G</topic><topic>Infections</topic><topic>Influenza</topic><topic>intramuscular injection</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mucosal immunity</topic><topic>Nicotiana benthamiana</topic><topic>Norovirus</topic><topic>Oral administration</topic><topic>Plants</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Toxicity</topic><topic>Transmission electron microscopy</topic><topic>vaccination</topic><topic>Vaccine</topic><topic>Vaccine development</topic><topic>Vaccines</topic><topic>Vectors (Biology)</topic><topic>Virions</topic><topic>Virus-like particle</topic><topic>Virus-like particles</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, Janna R.</creatorcontrib><creatorcontrib>Andreani, Guadalupe</creatorcontrib><creatorcontrib>Dubé, Charlotte</creatorcontrib><creatorcontrib>Berubé, Mélanie</creatorcontrib><creatorcontrib>Bussière, Diane</creatorcontrib><creatorcontrib>Couture, Manon M.-J.</creatorcontrib><creatorcontrib>Dargis, Michèle</creatorcontrib><creatorcontrib>Hendin, Hilary E.</creatorcontrib><creatorcontrib>Landry, Nathalie</creatorcontrib><creatorcontrib>Lavoie, Pierre-Olivier</creatorcontrib><creatorcontrib>Pillet, Stéphane</creatorcontrib><creatorcontrib>Ward, Brian J.</creatorcontrib><creatorcontrib>D'Aoust, Marc-André</creatorcontrib><creatorcontrib>Trépanier, Sonia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, Janna R.</au><au>Andreani, Guadalupe</au><au>Dubé, Charlotte</au><au>Berubé, Mélanie</au><au>Bussière, Diane</au><au>Couture, Manon M.-J.</au><au>Dargis, Michèle</au><au>Hendin, Hilary E.</au><au>Landry, Nathalie</au><au>Lavoie, Pierre-Olivier</au><au>Pillet, Stéphane</au><au>Ward, Brian J.</au><au>D'Aoust, Marc-André</au><au>Trépanier, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and characterization of a plant-derived norovirus-like particle vaccine</atitle><jtitle>Vaccine</jtitle><date>2023-09-22</date><risdate>2023</risdate><volume>41</volume><issue>41</issue><spage>6008</spage><epage>6016</epage><pages>6008-6016</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.vaccine.2023.08.036</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0205-5692</orcidid><orcidid>https://orcid.org/0000-0003-0283-372X</orcidid><orcidid>https://orcid.org/0000-0001-9994-2417</orcidid><orcidid>https://orcid.org/0000-0003-3251-958X</orcidid><orcidid>https://orcid.org/0000-0001-8088-2506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-410X
ispartof Vaccine, 2023-09, Vol.41 (41), p.6008-6016
issn 0264-410X
1873-2518
language eng
recordid cdi_proquest_miscellaneous_3040484044
source Elsevier ScienceDirect Journals
subjects Agrobacterium tumefaciens
Aluminum
Aluminum hydroxide
Animal model
Animal models
animals
Antibodies
Antigens
Biomass
Blood groups
Chromatography
Cloning
Diarrhea
feces
Genetic diversity
genetic variation
genotype
Genotypes
Hepatitis
human diseases
Immunogenicity
Immunoglobulin A
Immunoglobulin G
Infections
Influenza
intramuscular injection
Lymphocytes
Lymphocytes T
Mucosal immunity
Nicotiana benthamiana
Norovirus
Oral administration
Plants
Proteins
Rabbits
Severe acute respiratory syndrome coronavirus 2
Toxicity
Transmission electron microscopy
vaccination
Vaccine
Vaccine development
Vaccines
Vectors (Biology)
Virions
Virus-like particle
Virus-like particles
γ-Interferon
title Development and characterization of a plant-derived norovirus-like particle vaccine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20characterization%20of%20a%20plant-derived%20norovirus-like%20particle%20vaccine&rft.jtitle=Vaccine&rft.au=Shapiro,%20Janna%20R.&rft.date=2023-09-22&rft.volume=41&rft.issue=41&rft.spage=6008&rft.epage=6016&rft.pages=6008-6016&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2023.08.036&rft_dat=%3Cproquest_cross%3E2857846677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866039332&rft_id=info:pmid/&rft_els_id=S0264410X23009684&rfr_iscdi=true