RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment
Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic respon...
Gespeichert in:
Veröffentlicht in: | Functional & integrative genomics 2023-06, Vol.23 (2), p.141-141, Article 141 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 2 |
container_start_page | 141 |
container_title | Functional & integrative genomics |
container_volume | 23 |
creator | Wan, Lingyun Huang, Qiulan Ji, Xiaowen Song, Lisha Zhang, Zhanjiang Pan, Limei Fu, Jine Elbaiomy, Rania G. Eldomiaty, Ahmed S. Rather, Shabir A. Elashtokhy, Mohamed M. A. Gao, Jihai Guan, Lingliang Wei, Shugen El-Sappah, Ahmed H. |
description | Artemisia annua
L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of
A. annua
to hardly soluble aluminum phosphate (AlPO
4
, AlP), using soluble monopotassium phosphate (KH
2
PO
4
, KP) as a control. Liquid chromatography–mass spectrometry (LC–MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the
Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of
A. annua
. Conversely, LC–MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP.
GH3
,
SAUR
,
CRE1
, and
PYL
, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of
HMGR
in the artemisinin biosynthesis pathway, the majority of genes (
ACAT
,
FPS
,
CYP71AV1
, and
ALDH1
) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including
GATA
and
MYB
, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in
A. annua
L. in response to hardly soluble phosphorus fertilizer. |
doi_str_mv | 10.1007/s10142-023-01067-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040483952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807915491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c0959c0cd86d22a4977b3ecffc1fae2c5fcdda8fe863e8ef098a9ccfcfa5ab293</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxRtR3HX1C3iQgBcvrZU_PZ0ch0V3hUFBFLyFdLoy00s6aZM07J786mZ31hU86KmqqF-94vGa5iWFtxSgf5cpUMFaYLwFCpu-5Y-aUyq4bHsl5OOHnn8_aZ7lfAUAHSj-tDnhPaWSb8Rp8_PLpy3J-GPFYKewJ1Mg21RwnvJkiAlhNWRH8HrxMeFIygHJHgOWydblSGYsZoi-TgnzEkPGTEokB5NGf0Ny9OvgkRi_zlNYZ7IcYl4OpiApCU2ZMZTnzRNnfMYX9_Ws-fbh_dfzy3b3-eLj-XbXWgGytBZUpyzYUW5GxoxQfT9wtM5Z6gwy2zk7jkY6lBuOEh0oaZS1zjrTmYEpfta8OeouKVazuehq0aL3JmBcs-YgQEiuOvZflEnoFe2EohV9_Rd6FdcUqpE7ijFG1e1vdqRsijkndHpJ02zSjaagb5PUxyR1TVLfJal5PXp1L70OM44PJ7-jqwA_Armuwh7Tn9__kP0FGhmr_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807222199</pqid></control><display><type>article</type><title>RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Wan, Lingyun ; Huang, Qiulan ; Ji, Xiaowen ; Song, Lisha ; Zhang, Zhanjiang ; Pan, Limei ; Fu, Jine ; Elbaiomy, Rania G. ; Eldomiaty, Ahmed S. ; Rather, Shabir A. ; Elashtokhy, Mohamed M. A. ; Gao, Jihai ; Guan, Lingliang ; Wei, Shugen ; El-Sappah, Ahmed H.</creator><creatorcontrib>Wan, Lingyun ; Huang, Qiulan ; Ji, Xiaowen ; Song, Lisha ; Zhang, Zhanjiang ; Pan, Limei ; Fu, Jine ; Elbaiomy, Rania G. ; Eldomiaty, Ahmed S. ; Rather, Shabir A. ; Elashtokhy, Mohamed M. A. ; Gao, Jihai ; Guan, Lingliang ; Wei, Shugen ; El-Sappah, Ahmed H.</creatorcontrib><description>Artemisia annua
L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of
A. annua
to hardly soluble aluminum phosphate (AlPO
4
, AlP), using soluble monopotassium phosphate (KH
2
PO
4
, KP) as a control. Liquid chromatography–mass spectrometry (LC–MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the
Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of
A. annua
. Conversely, LC–MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP.
GH3
,
SAUR
,
CRE1
, and
PYL
, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of
HMGR
in the artemisinin biosynthesis pathway, the majority of genes (
ACAT
,
FPS
,
CYP71AV1
, and
ALDH1
) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including
GATA
and
MYB
, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in
A. annua
L. in response to hardly soluble phosphorus fertilizer.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-023-01067-3</identifier><identifier>PMID: 37118364</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; aluminum phosphate ; Animal Genetics and Genomics ; Artemisia annua ; Artemisia annua - chemistry ; Artemisia annua - genetics ; Artemisia annua - metabolism ; Artemisinin ; Artemisinins - chemistry ; Artemisinins - metabolism ; biochemical pathways ; Biochemistry ; Bioinformatics ; Biomass ; Biomedical and Life Sciences ; Biosynthesis ; Cell Biology ; Flowers & plants ; gene expression regulation ; gene ontology ; Gene regulation ; genome ; Genomes ; genomics ; Herbal medicine ; leaves ; Life Sciences ; Liquid chromatography ; Malaria ; mass spectrometry ; Mass spectroscopy ; Medical treatment ; Medicinal plants ; Metabolic response ; Metabolism ; Metabolites ; Microbial Genetics and Genomics ; Original Article ; Phosphates - metabolism ; phosphorus ; Phosphorus - metabolism ; phosphorus fertilizers ; Phytohormones ; phytomass ; Plant Genetics and Genomics ; plant growth ; Plant Growth Regulators - metabolism ; plant height ; plant hormones ; RNA ; secondary metabolites ; Sequence Analysis, RNA ; Signal transduction ; soluble phosphorus ; transcription (genetics) ; Transcription factors ; Transcriptomes ; transcriptomics</subject><ispartof>Functional & integrative genomics, 2023-06, Vol.23 (2), p.141-141, Article 141</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c0959c0cd86d22a4977b3ecffc1fae2c5fcdda8fe863e8ef098a9ccfcfa5ab293</citedby><cites>FETCH-LOGICAL-c408t-c0959c0cd86d22a4977b3ecffc1fae2c5fcdda8fe863e8ef098a9ccfcfa5ab293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-023-01067-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-023-01067-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37118364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Lingyun</creatorcontrib><creatorcontrib>Huang, Qiulan</creatorcontrib><creatorcontrib>Ji, Xiaowen</creatorcontrib><creatorcontrib>Song, Lisha</creatorcontrib><creatorcontrib>Zhang, Zhanjiang</creatorcontrib><creatorcontrib>Pan, Limei</creatorcontrib><creatorcontrib>Fu, Jine</creatorcontrib><creatorcontrib>Elbaiomy, Rania G.</creatorcontrib><creatorcontrib>Eldomiaty, Ahmed S.</creatorcontrib><creatorcontrib>Rather, Shabir A.</creatorcontrib><creatorcontrib>Elashtokhy, Mohamed M. A.</creatorcontrib><creatorcontrib>Gao, Jihai</creatorcontrib><creatorcontrib>Guan, Lingliang</creatorcontrib><creatorcontrib>Wei, Shugen</creatorcontrib><creatorcontrib>El-Sappah, Ahmed H.</creatorcontrib><title>RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment</title><title>Functional & integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>Artemisia annua
L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of
A. annua
to hardly soluble aluminum phosphate (AlPO
4
, AlP), using soluble monopotassium phosphate (KH
2
PO
4
, KP) as a control. Liquid chromatography–mass spectrometry (LC–MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the
Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of
A. annua
. Conversely, LC–MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP.
GH3
,
SAUR
,
CRE1
, and
PYL
, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of
HMGR
in the artemisinin biosynthesis pathway, the majority of genes (
ACAT
,
FPS
,
CYP71AV1
, and
ALDH1
) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including
GATA
and
MYB
, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in
A. annua
L. in response to hardly soluble phosphorus fertilizer.</description><subject>Aluminum</subject><subject>aluminum phosphate</subject><subject>Animal Genetics and Genomics</subject><subject>Artemisia annua</subject><subject>Artemisia annua - chemistry</subject><subject>Artemisia annua - genetics</subject><subject>Artemisia annua - metabolism</subject><subject>Artemisinin</subject><subject>Artemisinins - chemistry</subject><subject>Artemisinins - metabolism</subject><subject>biochemical pathways</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell Biology</subject><subject>Flowers & plants</subject><subject>gene expression regulation</subject><subject>gene ontology</subject><subject>Gene regulation</subject><subject>genome</subject><subject>Genomes</subject><subject>genomics</subject><subject>Herbal medicine</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Malaria</subject><subject>mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical treatment</subject><subject>Medicinal plants</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbial Genetics and Genomics</subject><subject>Original Article</subject><subject>Phosphates - metabolism</subject><subject>phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>phosphorus fertilizers</subject><subject>Phytohormones</subject><subject>phytomass</subject><subject>Plant Genetics and Genomics</subject><subject>plant growth</subject><subject>Plant Growth Regulators - metabolism</subject><subject>plant height</subject><subject>plant hormones</subject><subject>RNA</subject><subject>secondary metabolites</subject><subject>Sequence Analysis, RNA</subject><subject>Signal transduction</subject><subject>soluble phosphorus</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU-LFDEQxRtR3HX1C3iQgBcvrZU_PZ0ch0V3hUFBFLyFdLoy00s6aZM07J786mZ31hU86KmqqF-94vGa5iWFtxSgf5cpUMFaYLwFCpu-5Y-aUyq4bHsl5OOHnn8_aZ7lfAUAHSj-tDnhPaWSb8Rp8_PLpy3J-GPFYKewJ1Mg21RwnvJkiAlhNWRH8HrxMeFIygHJHgOWydblSGYsZoi-TgnzEkPGTEokB5NGf0Ny9OvgkRi_zlNYZ7IcYl4OpiApCU2ZMZTnzRNnfMYX9_Ws-fbh_dfzy3b3-eLj-XbXWgGytBZUpyzYUW5GxoxQfT9wtM5Z6gwy2zk7jkY6lBuOEh0oaZS1zjrTmYEpfta8OeouKVazuehq0aL3JmBcs-YgQEiuOvZflEnoFe2EohV9_Rd6FdcUqpE7ijFG1e1vdqRsijkndHpJ02zSjaagb5PUxyR1TVLfJal5PXp1L70OM44PJ7-jqwA_Armuwh7Tn9__kP0FGhmr_A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wan, Lingyun</creator><creator>Huang, Qiulan</creator><creator>Ji, Xiaowen</creator><creator>Song, Lisha</creator><creator>Zhang, Zhanjiang</creator><creator>Pan, Limei</creator><creator>Fu, Jine</creator><creator>Elbaiomy, Rania G.</creator><creator>Eldomiaty, Ahmed S.</creator><creator>Rather, Shabir A.</creator><creator>Elashtokhy, Mohamed M. A.</creator><creator>Gao, Jihai</creator><creator>Guan, Lingliang</creator><creator>Wei, Shugen</creator><creator>El-Sappah, Ahmed H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230601</creationdate><title>RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment</title><author>Wan, Lingyun ; Huang, Qiulan ; Ji, Xiaowen ; Song, Lisha ; Zhang, Zhanjiang ; Pan, Limei ; Fu, Jine ; Elbaiomy, Rania G. ; Eldomiaty, Ahmed S. ; Rather, Shabir A. ; Elashtokhy, Mohamed M. A. ; Gao, Jihai ; Guan, Lingliang ; Wei, Shugen ; El-Sappah, Ahmed H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c0959c0cd86d22a4977b3ecffc1fae2c5fcdda8fe863e8ef098a9ccfcfa5ab293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>aluminum phosphate</topic><topic>Animal Genetics and Genomics</topic><topic>Artemisia annua</topic><topic>Artemisia annua - chemistry</topic><topic>Artemisia annua - genetics</topic><topic>Artemisia annua - metabolism</topic><topic>Artemisinin</topic><topic>Artemisinins - chemistry</topic><topic>Artemisinins - metabolism</topic><topic>biochemical pathways</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell Biology</topic><topic>Flowers & plants</topic><topic>gene expression regulation</topic><topic>gene ontology</topic><topic>Gene regulation</topic><topic>genome</topic><topic>Genomes</topic><topic>genomics</topic><topic>Herbal medicine</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Malaria</topic><topic>mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical treatment</topic><topic>Medicinal plants</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbial Genetics and Genomics</topic><topic>Original Article</topic><topic>Phosphates - metabolism</topic><topic>phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>phosphorus fertilizers</topic><topic>Phytohormones</topic><topic>phytomass</topic><topic>Plant Genetics and Genomics</topic><topic>plant growth</topic><topic>Plant Growth Regulators - metabolism</topic><topic>plant height</topic><topic>plant hormones</topic><topic>RNA</topic><topic>secondary metabolites</topic><topic>Sequence Analysis, RNA</topic><topic>Signal transduction</topic><topic>soluble phosphorus</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Lingyun</creatorcontrib><creatorcontrib>Huang, Qiulan</creatorcontrib><creatorcontrib>Ji, Xiaowen</creatorcontrib><creatorcontrib>Song, Lisha</creatorcontrib><creatorcontrib>Zhang, Zhanjiang</creatorcontrib><creatorcontrib>Pan, Limei</creatorcontrib><creatorcontrib>Fu, Jine</creatorcontrib><creatorcontrib>Elbaiomy, Rania G.</creatorcontrib><creatorcontrib>Eldomiaty, Ahmed S.</creatorcontrib><creatorcontrib>Rather, Shabir A.</creatorcontrib><creatorcontrib>Elashtokhy, Mohamed M. A.</creatorcontrib><creatorcontrib>Gao, Jihai</creatorcontrib><creatorcontrib>Guan, Lingliang</creatorcontrib><creatorcontrib>Wei, Shugen</creatorcontrib><creatorcontrib>El-Sappah, Ahmed H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Functional & integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Lingyun</au><au>Huang, Qiulan</au><au>Ji, Xiaowen</au><au>Song, Lisha</au><au>Zhang, Zhanjiang</au><au>Pan, Limei</au><au>Fu, Jine</au><au>Elbaiomy, Rania G.</au><au>Eldomiaty, Ahmed S.</au><au>Rather, Shabir A.</au><au>Elashtokhy, Mohamed M. A.</au><au>Gao, Jihai</au><au>Guan, Lingliang</au><au>Wei, Shugen</au><au>El-Sappah, Ahmed H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment</atitle><jtitle>Functional & integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>23</volume><issue>2</issue><spage>141</spage><epage>141</epage><pages>141-141</pages><artnum>141</artnum><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>Artemisia annua
L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of
A. annua
to hardly soluble aluminum phosphate (AlPO
4
, AlP), using soluble monopotassium phosphate (KH
2
PO
4
, KP) as a control. Liquid chromatography–mass spectrometry (LC–MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the
Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of
A. annua
. Conversely, LC–MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP.
GH3
,
SAUR
,
CRE1
, and
PYL
, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of
HMGR
in the artemisinin biosynthesis pathway, the majority of genes (
ACAT
,
FPS
,
CYP71AV1
, and
ALDH1
) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including
GATA
and
MYB
, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in
A. annua
L. in response to hardly soluble phosphorus fertilizer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37118364</pmid><doi>10.1007/s10142-023-01067-3</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-793X |
ispartof | Functional & integrative genomics, 2023-06, Vol.23 (2), p.141-141, Article 141 |
issn | 1438-793X 1438-7948 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040483952 |
source | MEDLINE; SpringerLink Journals |
subjects | Aluminum aluminum phosphate Animal Genetics and Genomics Artemisia annua Artemisia annua - chemistry Artemisia annua - genetics Artemisia annua - metabolism Artemisinin Artemisinins - chemistry Artemisinins - metabolism biochemical pathways Biochemistry Bioinformatics Biomass Biomedical and Life Sciences Biosynthesis Cell Biology Flowers & plants gene expression regulation gene ontology Gene regulation genome Genomes genomics Herbal medicine leaves Life Sciences Liquid chromatography Malaria mass spectrometry Mass spectroscopy Medical treatment Medicinal plants Metabolic response Metabolism Metabolites Microbial Genetics and Genomics Original Article Phosphates - metabolism phosphorus Phosphorus - metabolism phosphorus fertilizers Phytohormones phytomass Plant Genetics and Genomics plant growth Plant Growth Regulators - metabolism plant height plant hormones RNA secondary metabolites Sequence Analysis, RNA Signal transduction soluble phosphorus transcription (genetics) Transcription factors Transcriptomes transcriptomics |
title | RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20sequencing%20in%20Artemisia%20annua%20L%20explored%20the%20genetic%20and%20metabolic%20responses%20to%20hardly%20soluble%20aluminum%20phosphate%20treatment&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Wan,%20Lingyun&rft.date=2023-06-01&rft.volume=23&rft.issue=2&rft.spage=141&rft.epage=141&rft.pages=141-141&rft.artnum=141&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-023-01067-3&rft_dat=%3Cproquest_cross%3E2807915491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807222199&rft_id=info:pmid/37118364&rfr_iscdi=true |