Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol

The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-08, Vol.145 (31), p.17253-17264
Hauptverfasser: Xia, Wei, Xie, Yijun, Jia, Shuaiqiang, Han, Shitao, Qi, Ruijuan, Chen, Tao, Xing, Xueqing, Yao, Ting, Zhou, Dawei, Dong, Xue, Zhai, Jianxin, Li, Jingjing, He, Jianping, Jiang, Dong, Yamauchi, Yusuke, He, Mingyuan, Wu, Haihong, Han, Buxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17264
container_issue 31
container_start_page 17253
container_title Journal of the American Chemical Society
container_volume 145
creator Xia, Wei
Xie, Yijun
Jia, Shuaiqiang
Han, Shitao
Qi, Ruijuan
Chen, Tao
Xing, Xueqing
Yao, Ting
Zhou, Dawei
Dong, Xue
Zhai, Jianxin
Li, Jingjing
He, Jianping
Jiang, Dong
Yamauchi, Yusuke
He, Mingyuan
Wu, Haihong
Han, Buxing
description The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.
doi_str_mv 10.1021/jacs.3c04612
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040462213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040462213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-14c62f2c667c59ce2aefddbcc3b8aff97e13952afa546353a492d9e60538a5683</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EEqWw4wO8ZJNijx9NllVUHlKlIh7ryHXGNFUSh9hhxYJ_4A_5ElJRiSWr0eieudLcS8glZzPOgF_vjA0zYZnUHI7IhCtgieKgj8mEMQbJPNXilJyFsBtXCSmfkI9FOV5hG2nuuw57-lS1rzXSRfRNoA-9b3xEmn9_fuUjMXT1KNOqpcsabey93WJTWVPTfA30EcvBxsq31Pmexi3SpXOVrX7d23fsw170ji7j1rS-PicnztQBLw5zSl5uls_5XbJa397ni1ViQMmYcGk1OLBaz63KLIJBV5Yba8UmNc5lc-QiU2CcUVILJYzMoMxQMyVSo3QqpuTq17fr_duAIRZNFSzWtWnRD6EQTI6ZAXDxLwqpTAFSzeUfOqZe7PzQt-MPBWfFvoti30Vx6EL8ABQ5ffE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848228614</pqid></control><display><type>article</type><title>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</title><source>ACS Publications</source><creator>Xia, Wei ; Xie, Yijun ; Jia, Shuaiqiang ; Han, Shitao ; Qi, Ruijuan ; Chen, Tao ; Xing, Xueqing ; Yao, Ting ; Zhou, Dawei ; Dong, Xue ; Zhai, Jianxin ; Li, Jingjing ; He, Jianping ; Jiang, Dong ; Yamauchi, Yusuke ; He, Mingyuan ; Wu, Haihong ; Han, Buxing</creator><creatorcontrib>Xia, Wei ; Xie, Yijun ; Jia, Shuaiqiang ; Han, Shitao ; Qi, Ruijuan ; Chen, Tao ; Xing, Xueqing ; Yao, Ting ; Zhou, Dawei ; Dong, Xue ; Zhai, Jianxin ; Li, Jingjing ; He, Jianping ; Jiang, Dong ; Yamauchi, Yusuke ; He, Mingyuan ; Wu, Haihong ; Han, Buxing</creatorcontrib><description>The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c04612</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon ; carbon dioxide ; carbon nanotubes ; catalysts ; density functional theory ; electrochemistry ; ethanol ; fuels ; hydrogen bonding ; renewable electricity</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17253-17264</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7854-927X ; 0000-0001-7525-2809 ; 0000-0001-6266-8290 ; 0000-0003-0440-809X ; 0000-0002-1052-6319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c04612$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c04612$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Xie, Yijun</creatorcontrib><creatorcontrib>Jia, Shuaiqiang</creatorcontrib><creatorcontrib>Han, Shitao</creatorcontrib><creatorcontrib>Qi, Ruijuan</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xing, Xueqing</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Zhou, Dawei</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Zhai, Jianxin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>He, Mingyuan</creatorcontrib><creatorcontrib>Wu, Haihong</creatorcontrib><creatorcontrib>Han, Buxing</creatorcontrib><title>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.</description><subject>carbon</subject><subject>carbon dioxide</subject><subject>carbon nanotubes</subject><subject>catalysts</subject><subject>density functional theory</subject><subject>electrochemistry</subject><subject>ethanol</subject><subject>fuels</subject><subject>hydrogen bonding</subject><subject>renewable electricity</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EEqWw4wO8ZJNijx9NllVUHlKlIh7ryHXGNFUSh9hhxYJ_4A_5ElJRiSWr0eieudLcS8glZzPOgF_vjA0zYZnUHI7IhCtgieKgj8mEMQbJPNXilJyFsBtXCSmfkI9FOV5hG2nuuw57-lS1rzXSRfRNoA-9b3xEmn9_fuUjMXT1KNOqpcsabey93WJTWVPTfA30EcvBxsq31Pmexi3SpXOVrX7d23fsw170ji7j1rS-PicnztQBLw5zSl5uls_5XbJa397ni1ViQMmYcGk1OLBaz63KLIJBV5Yba8UmNc5lc-QiU2CcUVILJYzMoMxQMyVSo3QqpuTq17fr_duAIRZNFSzWtWnRD6EQTI6ZAXDxLwqpTAFSzeUfOqZe7PzQt-MPBWfFvoti30Vx6EL8ABQ5ffE</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Xia, Wei</creator><creator>Xie, Yijun</creator><creator>Jia, Shuaiqiang</creator><creator>Han, Shitao</creator><creator>Qi, Ruijuan</creator><creator>Chen, Tao</creator><creator>Xing, Xueqing</creator><creator>Yao, Ting</creator><creator>Zhou, Dawei</creator><creator>Dong, Xue</creator><creator>Zhai, Jianxin</creator><creator>Li, Jingjing</creator><creator>He, Jianping</creator><creator>Jiang, Dong</creator><creator>Yamauchi, Yusuke</creator><creator>He, Mingyuan</creator><creator>Wu, Haihong</creator><creator>Han, Buxing</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7854-927X</orcidid><orcidid>https://orcid.org/0000-0001-7525-2809</orcidid><orcidid>https://orcid.org/0000-0001-6266-8290</orcidid><orcidid>https://orcid.org/0000-0003-0440-809X</orcidid><orcidid>https://orcid.org/0000-0002-1052-6319</orcidid></search><sort><creationdate>20230809</creationdate><title>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</title><author>Xia, Wei ; Xie, Yijun ; Jia, Shuaiqiang ; Han, Shitao ; Qi, Ruijuan ; Chen, Tao ; Xing, Xueqing ; Yao, Ting ; Zhou, Dawei ; Dong, Xue ; Zhai, Jianxin ; Li, Jingjing ; He, Jianping ; Jiang, Dong ; Yamauchi, Yusuke ; He, Mingyuan ; Wu, Haihong ; Han, Buxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-14c62f2c667c59ce2aefddbcc3b8aff97e13952afa546353a492d9e60538a5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon</topic><topic>carbon dioxide</topic><topic>carbon nanotubes</topic><topic>catalysts</topic><topic>density functional theory</topic><topic>electrochemistry</topic><topic>ethanol</topic><topic>fuels</topic><topic>hydrogen bonding</topic><topic>renewable electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Xie, Yijun</creatorcontrib><creatorcontrib>Jia, Shuaiqiang</creatorcontrib><creatorcontrib>Han, Shitao</creatorcontrib><creatorcontrib>Qi, Ruijuan</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xing, Xueqing</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Zhou, Dawei</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Zhai, Jianxin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>He, Mingyuan</creatorcontrib><creatorcontrib>Wu, Haihong</creatorcontrib><creatorcontrib>Han, Buxing</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Wei</au><au>Xie, Yijun</au><au>Jia, Shuaiqiang</au><au>Han, Shitao</au><au>Qi, Ruijuan</au><au>Chen, Tao</au><au>Xing, Xueqing</au><au>Yao, Ting</au><au>Zhou, Dawei</au><au>Dong, Xue</au><au>Zhai, Jianxin</au><au>Li, Jingjing</au><au>He, Jianping</au><au>Jiang, Dong</au><au>Yamauchi, Yusuke</au><au>He, Mingyuan</au><au>Wu, Haihong</au><au>Han, Buxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>17253</spage><epage>17264</epage><pages>17253-17264</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c04612</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7854-927X</orcidid><orcidid>https://orcid.org/0000-0001-7525-2809</orcidid><orcidid>https://orcid.org/0000-0001-6266-8290</orcidid><orcidid>https://orcid.org/0000-0003-0440-809X</orcidid><orcidid>https://orcid.org/0000-0002-1052-6319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17253-17264
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3040462213
source ACS Publications
subjects carbon
carbon dioxide
carbon nanotubes
catalysts
density functional theory
electrochemistry
ethanol
fuels
hydrogen bonding
renewable electricity
title Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjacent%20Copper%20Single%20Atoms%20Promote%20C%E2%80%93C%20Coupling%20in%20Electrochemical%20CO2%20Reduction%20for%20the%20Efficient%20Conversion%20of%20Ethanol&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xia,%20Wei&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=17253&rft.epage=17264&rft.pages=17253-17264&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c04612&rft_dat=%3Cproquest_acs_j%3E3040462213%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848228614&rft_id=info:pmid/&rfr_iscdi=true