Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol
The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been rep...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-08, Vol.145 (31), p.17253-17264 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17264 |
---|---|
container_issue | 31 |
container_start_page | 17253 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Xia, Wei Xie, Yijun Jia, Shuaiqiang Han, Shitao Qi, Ruijuan Chen, Tao Xing, Xueqing Yao, Ting Zhou, Dawei Dong, Xue Zhai, Jianxin Li, Jingjing He, Jianping Jiang, Dong Yamauchi, Yusuke He, Mingyuan Wu, Haihong Han, Buxing |
description | The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically. |
doi_str_mv | 10.1021/jacs.3c04612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040462213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040462213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-14c62f2c667c59ce2aefddbcc3b8aff97e13952afa546353a492d9e60538a5683</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EEqWw4wO8ZJNijx9NllVUHlKlIh7ryHXGNFUSh9hhxYJ_4A_5ElJRiSWr0eieudLcS8glZzPOgF_vjA0zYZnUHI7IhCtgieKgj8mEMQbJPNXilJyFsBtXCSmfkI9FOV5hG2nuuw57-lS1rzXSRfRNoA-9b3xEmn9_fuUjMXT1KNOqpcsabey93WJTWVPTfA30EcvBxsq31Pmexi3SpXOVrX7d23fsw170ji7j1rS-PicnztQBLw5zSl5uls_5XbJa397ni1ViQMmYcGk1OLBaz63KLIJBV5Yba8UmNc5lc-QiU2CcUVILJYzMoMxQMyVSo3QqpuTq17fr_duAIRZNFSzWtWnRD6EQTI6ZAXDxLwqpTAFSzeUfOqZe7PzQt-MPBWfFvoti30Vx6EL8ABQ5ffE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848228614</pqid></control><display><type>article</type><title>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</title><source>ACS Publications</source><creator>Xia, Wei ; Xie, Yijun ; Jia, Shuaiqiang ; Han, Shitao ; Qi, Ruijuan ; Chen, Tao ; Xing, Xueqing ; Yao, Ting ; Zhou, Dawei ; Dong, Xue ; Zhai, Jianxin ; Li, Jingjing ; He, Jianping ; Jiang, Dong ; Yamauchi, Yusuke ; He, Mingyuan ; Wu, Haihong ; Han, Buxing</creator><creatorcontrib>Xia, Wei ; Xie, Yijun ; Jia, Shuaiqiang ; Han, Shitao ; Qi, Ruijuan ; Chen, Tao ; Xing, Xueqing ; Yao, Ting ; Zhou, Dawei ; Dong, Xue ; Zhai, Jianxin ; Li, Jingjing ; He, Jianping ; Jiang, Dong ; Yamauchi, Yusuke ; He, Mingyuan ; Wu, Haihong ; Han, Buxing</creatorcontrib><description>The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c04612</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon ; carbon dioxide ; carbon nanotubes ; catalysts ; density functional theory ; electrochemistry ; ethanol ; fuels ; hydrogen bonding ; renewable electricity</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17253-17264</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7854-927X ; 0000-0001-7525-2809 ; 0000-0001-6266-8290 ; 0000-0003-0440-809X ; 0000-0002-1052-6319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c04612$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c04612$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Xie, Yijun</creatorcontrib><creatorcontrib>Jia, Shuaiqiang</creatorcontrib><creatorcontrib>Han, Shitao</creatorcontrib><creatorcontrib>Qi, Ruijuan</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xing, Xueqing</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Zhou, Dawei</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Zhai, Jianxin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>He, Mingyuan</creatorcontrib><creatorcontrib>Wu, Haihong</creatorcontrib><creatorcontrib>Han, Buxing</creatorcontrib><title>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.</description><subject>carbon</subject><subject>carbon dioxide</subject><subject>carbon nanotubes</subject><subject>catalysts</subject><subject>density functional theory</subject><subject>electrochemistry</subject><subject>ethanol</subject><subject>fuels</subject><subject>hydrogen bonding</subject><subject>renewable electricity</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EEqWw4wO8ZJNijx9NllVUHlKlIh7ryHXGNFUSh9hhxYJ_4A_5ElJRiSWr0eieudLcS8glZzPOgF_vjA0zYZnUHI7IhCtgieKgj8mEMQbJPNXilJyFsBtXCSmfkI9FOV5hG2nuuw57-lS1rzXSRfRNoA-9b3xEmn9_fuUjMXT1KNOqpcsabey93WJTWVPTfA30EcvBxsq31Pmexi3SpXOVrX7d23fsw170ji7j1rS-PicnztQBLw5zSl5uls_5XbJa397ni1ViQMmYcGk1OLBaz63KLIJBV5Yba8UmNc5lc-QiU2CcUVILJYzMoMxQMyVSo3QqpuTq17fr_duAIRZNFSzWtWnRD6EQTI6ZAXDxLwqpTAFSzeUfOqZe7PzQt-MPBWfFvoti30Vx6EL8ABQ5ffE</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Xia, Wei</creator><creator>Xie, Yijun</creator><creator>Jia, Shuaiqiang</creator><creator>Han, Shitao</creator><creator>Qi, Ruijuan</creator><creator>Chen, Tao</creator><creator>Xing, Xueqing</creator><creator>Yao, Ting</creator><creator>Zhou, Dawei</creator><creator>Dong, Xue</creator><creator>Zhai, Jianxin</creator><creator>Li, Jingjing</creator><creator>He, Jianping</creator><creator>Jiang, Dong</creator><creator>Yamauchi, Yusuke</creator><creator>He, Mingyuan</creator><creator>Wu, Haihong</creator><creator>Han, Buxing</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7854-927X</orcidid><orcidid>https://orcid.org/0000-0001-7525-2809</orcidid><orcidid>https://orcid.org/0000-0001-6266-8290</orcidid><orcidid>https://orcid.org/0000-0003-0440-809X</orcidid><orcidid>https://orcid.org/0000-0002-1052-6319</orcidid></search><sort><creationdate>20230809</creationdate><title>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</title><author>Xia, Wei ; Xie, Yijun ; Jia, Shuaiqiang ; Han, Shitao ; Qi, Ruijuan ; Chen, Tao ; Xing, Xueqing ; Yao, Ting ; Zhou, Dawei ; Dong, Xue ; Zhai, Jianxin ; Li, Jingjing ; He, Jianping ; Jiang, Dong ; Yamauchi, Yusuke ; He, Mingyuan ; Wu, Haihong ; Han, Buxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-14c62f2c667c59ce2aefddbcc3b8aff97e13952afa546353a492d9e60538a5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon</topic><topic>carbon dioxide</topic><topic>carbon nanotubes</topic><topic>catalysts</topic><topic>density functional theory</topic><topic>electrochemistry</topic><topic>ethanol</topic><topic>fuels</topic><topic>hydrogen bonding</topic><topic>renewable electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Xie, Yijun</creatorcontrib><creatorcontrib>Jia, Shuaiqiang</creatorcontrib><creatorcontrib>Han, Shitao</creatorcontrib><creatorcontrib>Qi, Ruijuan</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xing, Xueqing</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Zhou, Dawei</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Zhai, Jianxin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>He, Mingyuan</creatorcontrib><creatorcontrib>Wu, Haihong</creatorcontrib><creatorcontrib>Han, Buxing</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Wei</au><au>Xie, Yijun</au><au>Jia, Shuaiqiang</au><au>Han, Shitao</au><au>Qi, Ruijuan</au><au>Chen, Tao</au><au>Xing, Xueqing</au><au>Yao, Ting</au><au>Zhou, Dawei</au><au>Dong, Xue</au><au>Zhai, Jianxin</au><au>Li, Jingjing</au><au>He, Jianping</au><au>Jiang, Dong</au><au>Yamauchi, Yusuke</au><au>He, Mingyuan</au><au>Wu, Haihong</au><au>Han, Buxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>17253</spage><epage>17264</epage><pages>17253-17264</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu–N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm–2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu–N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu–N3 sites with a short distance could promote the C–C coupling synergistically.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c04612</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7854-927X</orcidid><orcidid>https://orcid.org/0000-0001-7525-2809</orcidid><orcidid>https://orcid.org/0000-0001-6266-8290</orcidid><orcidid>https://orcid.org/0000-0003-0440-809X</orcidid><orcidid>https://orcid.org/0000-0002-1052-6319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17253-17264 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040462213 |
source | ACS Publications |
subjects | carbon carbon dioxide carbon nanotubes catalysts density functional theory electrochemistry ethanol fuels hydrogen bonding renewable electricity |
title | Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjacent%20Copper%20Single%20Atoms%20Promote%20C%E2%80%93C%20Coupling%20in%20Electrochemical%20CO2%20Reduction%20for%20the%20Efficient%20Conversion%20of%20Ethanol&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xia,%20Wei&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=17253&rft.epage=17264&rft.pages=17253-17264&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c04612&rft_dat=%3Cproquest_acs_j%3E3040462213%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848228614&rft_id=info:pmid/&rfr_iscdi=true |