Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress

Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO 3 − concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2023-06, Vol.850 (10-11), p.2447-2459
Hauptverfasser: Zhao, Yan, Wang, Yan, Zhang, Chengshuo, Zhou, Haotian, Song, Lingyuan, Tu, HanQing, Zhao, Jinliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2459
container_issue 10-11
container_start_page 2447
container_title Hydrobiologia
container_volume 850
creator Zhao, Yan
Wang, Yan
Zhang, Chengshuo
Zhou, Haotian
Song, Lingyuan
Tu, HanQing
Zhao, Jinliang
description Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO 3 − concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO 3 − transporters (Na + /HCO 3 − cotransporter and Cl − /HCO 3 – exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO 3 − concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl − /HCO 3 − exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na + /HCO 3 − cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO 3 − transporters are involved in the HCO 3 − metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.
doi_str_mv 10.1007/s10750-022-05020-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040461941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825580991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</originalsourceid><addsrcrecordid>eNp9kbFOwzAQhi0EEqXwAkyWWBgaODtxEo-oAoqEYAFW65K4YAhO8LlDeQJmHpEnIaUgJAamu-H7fp3uZ2xfwJEAKI5JQKEgASkTUCAhyTfYSKgiTZQQxSYbAYgyKYUqt9kO0SMMkpYwYq93GBxG13nuPO9nEz6bXqcfb-8TXmOoOu9qjv5h2QQkS5Nhb34IHgN66rsQbaCVfeVay6NrsXfIm0Vw_v47BKPl2D5h67yLS04xWKJdtjXHluze9xyz27PTm-ksubw-v5ieXCZ1qmRMlLRVleUi17ZWpS4AUFRYljrLGymzRjRFrjIxL1JUKDJd2EbqHKyWWA0fgHTMDte5feheFpaieXZU27ZFb7sFmRQyGPJ1Jgb04A_62C2CH64zspRKlaD1ipJrqg4dUbBz0wf3jGFpBJhVHWZdhxnqMF91mHyQ0rVE_eoxNvxG_2N9AlFWjZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825580991</pqid></control><display><type>article</type><title>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</title><source>SpringerLink Journals</source><creator>Zhao, Yan ; Wang, Yan ; Zhang, Chengshuo ; Zhou, Haotian ; Song, Lingyuan ; Tu, HanQing ; Zhao, Jinliang</creator><creatorcontrib>Zhao, Yan ; Wang, Yan ; Zhang, Chengshuo ; Zhou, Haotian ; Song, Lingyuan ; Tu, HanQing ; Zhao, Jinliang</creatorcontrib><description>Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO 3 − concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO 3 − transporters (Na + /HCO 3 − cotransporter and Cl − /HCO 3 – exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO 3 − concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl − /HCO 3 − exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na + /HCO 3 − cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO 3 − transporters are involved in the HCO 3 − metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-022-05020-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>acid-base balance ; Advances in Cichlid Research V ; Alkaline water ; Alkalinity ; Biomedical and Life Sciences ; carbonate dehydratase ; Carbonates ; Carbonic anhydrases ; Ecology ; Fish ; Freshwater ; Freshwater &amp; Marine Ecology ; Freshwater fish ; Freshwater fishes ; Gene expression ; Inland water environment ; Intestine ; Intestines ; Kidneys ; Life Sciences ; Metabolism ; Metabolites ; Nucleotide sequence ; Oreochromis niloticus ; pH effects ; protein synthesis ; Proteins ; quantitative polymerase chain reaction ; Spectrophotometers ; symporters ; Tilapia ; Time dependence ; Western blotting ; Whitefish ; Zoology</subject><ispartof>Hydrobiologia, 2023-06, Vol.850 (10-11), p.2447-2459</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</citedby><cites>FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</cites><orcidid>0000-0003-4632-5647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-022-05020-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-022-05020-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Chengshuo</creatorcontrib><creatorcontrib>Zhou, Haotian</creatorcontrib><creatorcontrib>Song, Lingyuan</creatorcontrib><creatorcontrib>Tu, HanQing</creatorcontrib><creatorcontrib>Zhao, Jinliang</creatorcontrib><title>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO 3 − concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO 3 − transporters (Na + /HCO 3 − cotransporter and Cl − /HCO 3 – exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO 3 − concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl − /HCO 3 − exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na + /HCO 3 − cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO 3 − transporters are involved in the HCO 3 − metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.</description><subject>acid-base balance</subject><subject>Advances in Cichlid Research V</subject><subject>Alkaline water</subject><subject>Alkalinity</subject><subject>Biomedical and Life Sciences</subject><subject>carbonate dehydratase</subject><subject>Carbonates</subject><subject>Carbonic anhydrases</subject><subject>Ecology</subject><subject>Fish</subject><subject>Freshwater</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Freshwater fish</subject><subject>Freshwater fishes</subject><subject>Gene expression</subject><subject>Inland water environment</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nucleotide sequence</subject><subject>Oreochromis niloticus</subject><subject>pH effects</subject><subject>protein synthesis</subject><subject>Proteins</subject><subject>quantitative polymerase chain reaction</subject><subject>Spectrophotometers</subject><subject>symporters</subject><subject>Tilapia</subject><subject>Time dependence</subject><subject>Western blotting</subject><subject>Whitefish</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kbFOwzAQhi0EEqXwAkyWWBgaODtxEo-oAoqEYAFW65K4YAhO8LlDeQJmHpEnIaUgJAamu-H7fp3uZ2xfwJEAKI5JQKEgASkTUCAhyTfYSKgiTZQQxSYbAYgyKYUqt9kO0SMMkpYwYq93GBxG13nuPO9nEz6bXqcfb-8TXmOoOu9qjv5h2QQkS5Nhb34IHgN66rsQbaCVfeVay6NrsXfIm0Vw_v47BKPl2D5h67yLS04xWKJdtjXHluze9xyz27PTm-ksubw-v5ieXCZ1qmRMlLRVleUi17ZWpS4AUFRYljrLGymzRjRFrjIxL1JUKDJd2EbqHKyWWA0fgHTMDte5feheFpaieXZU27ZFb7sFmRQyGPJ1Jgb04A_62C2CH64zspRKlaD1ipJrqg4dUbBz0wf3jGFpBJhVHWZdhxnqMF91mHyQ0rVE_eoxNvxG_2N9AlFWjZM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhao, Yan</creator><creator>Wang, Yan</creator><creator>Zhang, Chengshuo</creator><creator>Zhou, Haotian</creator><creator>Song, Lingyuan</creator><creator>Tu, HanQing</creator><creator>Zhao, Jinliang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4632-5647</orcidid></search><sort><creationdate>20230601</creationdate><title>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</title><author>Zhao, Yan ; Wang, Yan ; Zhang, Chengshuo ; Zhou, Haotian ; Song, Lingyuan ; Tu, HanQing ; Zhao, Jinliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acid-base balance</topic><topic>Advances in Cichlid Research V</topic><topic>Alkaline water</topic><topic>Alkalinity</topic><topic>Biomedical and Life Sciences</topic><topic>carbonate dehydratase</topic><topic>Carbonates</topic><topic>Carbonic anhydrases</topic><topic>Ecology</topic><topic>Fish</topic><topic>Freshwater</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Freshwater fish</topic><topic>Freshwater fishes</topic><topic>Gene expression</topic><topic>Inland water environment</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nucleotide sequence</topic><topic>Oreochromis niloticus</topic><topic>pH effects</topic><topic>protein synthesis</topic><topic>Proteins</topic><topic>quantitative polymerase chain reaction</topic><topic>Spectrophotometers</topic><topic>symporters</topic><topic>Tilapia</topic><topic>Time dependence</topic><topic>Western blotting</topic><topic>Whitefish</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Chengshuo</creatorcontrib><creatorcontrib>Zhou, Haotian</creatorcontrib><creatorcontrib>Song, Lingyuan</creatorcontrib><creatorcontrib>Tu, HanQing</creatorcontrib><creatorcontrib>Zhao, Jinliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yan</au><au>Wang, Yan</au><au>Zhang, Chengshuo</au><au>Zhou, Haotian</au><au>Song, Lingyuan</au><au>Tu, HanQing</au><au>Zhao, Jinliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>850</volume><issue>10-11</issue><spage>2447</spage><epage>2459</epage><pages>2447-2459</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO 3 − concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO 3 − transporters (Na + /HCO 3 − cotransporter and Cl − /HCO 3 – exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO 3 − concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl − /HCO 3 − exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na + /HCO 3 − cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO 3 − transporters are involved in the HCO 3 − metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-022-05020-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4632-5647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2023-06, Vol.850 (10-11), p.2447-2459
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_miscellaneous_3040461941
source SpringerLink Journals
subjects acid-base balance
Advances in Cichlid Research V
Alkaline water
Alkalinity
Biomedical and Life Sciences
carbonate dehydratase
Carbonates
Carbonic anhydrases
Ecology
Fish
Freshwater
Freshwater & Marine Ecology
Freshwater fish
Freshwater fishes
Gene expression
Inland water environment
Intestine
Intestines
Kidneys
Life Sciences
Metabolism
Metabolites
Nucleotide sequence
Oreochromis niloticus
pH effects
protein synthesis
Proteins
quantitative polymerase chain reaction
Spectrophotometers
symporters
Tilapia
Time dependence
Western blotting
Whitefish
Zoology
title Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20in%20pH,%20HCO3%E2%88%92,%20carbonic%20anhydrases,%20and%20HCO3%E2%88%92%20transporters%20in%20Nile%20tilapia%20during%20carbonate%20alkalinity%20stress&rft.jtitle=Hydrobiologia&rft.au=Zhao,%20Yan&rft.date=2023-06-01&rft.volume=850&rft.issue=10-11&rft.spage=2447&rft.epage=2459&rft.pages=2447-2459&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-022-05020-6&rft_dat=%3Cproquest_cross%3E2825580991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825580991&rft_id=info:pmid/&rfr_iscdi=true