Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress
Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO 3 − concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and C...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2023-06, Vol.850 (10-11), p.2447-2459 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2459 |
---|---|
container_issue | 10-11 |
container_start_page | 2447 |
container_title | Hydrobiologia |
container_volume | 850 |
creator | Zhao, Yan Wang, Yan Zhang, Chengshuo Zhou, Haotian Song, Lingyuan Tu, HanQing Zhao, Jinliang |
description | Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO
3
−
concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO
3
−
transporters (Na
+
/HCO
3
−
cotransporter and Cl
−
/HCO
3
–
exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO
3
−
concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl
−
/HCO
3
−
exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na
+
/HCO
3
−
cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO
3
−
transporters are involved in the HCO
3
−
metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress. |
doi_str_mv | 10.1007/s10750-022-05020-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040461941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825580991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</originalsourceid><addsrcrecordid>eNp9kbFOwzAQhi0EEqXwAkyWWBgaODtxEo-oAoqEYAFW65K4YAhO8LlDeQJmHpEnIaUgJAamu-H7fp3uZ2xfwJEAKI5JQKEgASkTUCAhyTfYSKgiTZQQxSYbAYgyKYUqt9kO0SMMkpYwYq93GBxG13nuPO9nEz6bXqcfb-8TXmOoOu9qjv5h2QQkS5Nhb34IHgN66rsQbaCVfeVay6NrsXfIm0Vw_v47BKPl2D5h67yLS04xWKJdtjXHluze9xyz27PTm-ksubw-v5ieXCZ1qmRMlLRVleUi17ZWpS4AUFRYljrLGymzRjRFrjIxL1JUKDJd2EbqHKyWWA0fgHTMDte5feheFpaieXZU27ZFb7sFmRQyGPJ1Jgb04A_62C2CH64zspRKlaD1ipJrqg4dUbBz0wf3jGFpBJhVHWZdhxnqMF91mHyQ0rVE_eoxNvxG_2N9AlFWjZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825580991</pqid></control><display><type>article</type><title>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</title><source>SpringerLink Journals</source><creator>Zhao, Yan ; Wang, Yan ; Zhang, Chengshuo ; Zhou, Haotian ; Song, Lingyuan ; Tu, HanQing ; Zhao, Jinliang</creator><creatorcontrib>Zhao, Yan ; Wang, Yan ; Zhang, Chengshuo ; Zhou, Haotian ; Song, Lingyuan ; Tu, HanQing ; Zhao, Jinliang</creatorcontrib><description>Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO
3
−
concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO
3
−
transporters (Na
+
/HCO
3
−
cotransporter and Cl
−
/HCO
3
–
exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO
3
−
concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl
−
/HCO
3
−
exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na
+
/HCO
3
−
cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO
3
−
transporters are involved in the HCO
3
−
metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-022-05020-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>acid-base balance ; Advances in Cichlid Research V ; Alkaline water ; Alkalinity ; Biomedical and Life Sciences ; carbonate dehydratase ; Carbonates ; Carbonic anhydrases ; Ecology ; Fish ; Freshwater ; Freshwater & Marine Ecology ; Freshwater fish ; Freshwater fishes ; Gene expression ; Inland water environment ; Intestine ; Intestines ; Kidneys ; Life Sciences ; Metabolism ; Metabolites ; Nucleotide sequence ; Oreochromis niloticus ; pH effects ; protein synthesis ; Proteins ; quantitative polymerase chain reaction ; Spectrophotometers ; symporters ; Tilapia ; Time dependence ; Western blotting ; Whitefish ; Zoology</subject><ispartof>Hydrobiologia, 2023-06, Vol.850 (10-11), p.2447-2459</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</citedby><cites>FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</cites><orcidid>0000-0003-4632-5647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-022-05020-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-022-05020-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Chengshuo</creatorcontrib><creatorcontrib>Zhou, Haotian</creatorcontrib><creatorcontrib>Song, Lingyuan</creatorcontrib><creatorcontrib>Tu, HanQing</creatorcontrib><creatorcontrib>Zhao, Jinliang</creatorcontrib><title>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO
3
−
concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO
3
−
transporters (Na
+
/HCO
3
−
cotransporter and Cl
−
/HCO
3
–
exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO
3
−
concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl
−
/HCO
3
−
exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na
+
/HCO
3
−
cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO
3
−
transporters are involved in the HCO
3
−
metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.</description><subject>acid-base balance</subject><subject>Advances in Cichlid Research V</subject><subject>Alkaline water</subject><subject>Alkalinity</subject><subject>Biomedical and Life Sciences</subject><subject>carbonate dehydratase</subject><subject>Carbonates</subject><subject>Carbonic anhydrases</subject><subject>Ecology</subject><subject>Fish</subject><subject>Freshwater</subject><subject>Freshwater & Marine Ecology</subject><subject>Freshwater fish</subject><subject>Freshwater fishes</subject><subject>Gene expression</subject><subject>Inland water environment</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nucleotide sequence</subject><subject>Oreochromis niloticus</subject><subject>pH effects</subject><subject>protein synthesis</subject><subject>Proteins</subject><subject>quantitative polymerase chain reaction</subject><subject>Spectrophotometers</subject><subject>symporters</subject><subject>Tilapia</subject><subject>Time dependence</subject><subject>Western blotting</subject><subject>Whitefish</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kbFOwzAQhi0EEqXwAkyWWBgaODtxEo-oAoqEYAFW65K4YAhO8LlDeQJmHpEnIaUgJAamu-H7fp3uZ2xfwJEAKI5JQKEgASkTUCAhyTfYSKgiTZQQxSYbAYgyKYUqt9kO0SMMkpYwYq93GBxG13nuPO9nEz6bXqcfb-8TXmOoOu9qjv5h2QQkS5Nhb34IHgN66rsQbaCVfeVay6NrsXfIm0Vw_v47BKPl2D5h67yLS04xWKJdtjXHluze9xyz27PTm-ksubw-v5ieXCZ1qmRMlLRVleUi17ZWpS4AUFRYljrLGymzRjRFrjIxL1JUKDJd2EbqHKyWWA0fgHTMDte5feheFpaieXZU27ZFb7sFmRQyGPJ1Jgb04A_62C2CH64zspRKlaD1ipJrqg4dUbBz0wf3jGFpBJhVHWZdhxnqMF91mHyQ0rVE_eoxNvxG_2N9AlFWjZM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhao, Yan</creator><creator>Wang, Yan</creator><creator>Zhang, Chengshuo</creator><creator>Zhou, Haotian</creator><creator>Song, Lingyuan</creator><creator>Tu, HanQing</creator><creator>Zhao, Jinliang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4632-5647</orcidid></search><sort><creationdate>20230601</creationdate><title>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</title><author>Zhao, Yan ; Wang, Yan ; Zhang, Chengshuo ; Zhou, Haotian ; Song, Lingyuan ; Tu, HanQing ; Zhao, Jinliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-52ebb46169ec589700a1ba88946d224d1d76541f73a5a1497ed2960e92ab15703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acid-base balance</topic><topic>Advances in Cichlid Research V</topic><topic>Alkaline water</topic><topic>Alkalinity</topic><topic>Biomedical and Life Sciences</topic><topic>carbonate dehydratase</topic><topic>Carbonates</topic><topic>Carbonic anhydrases</topic><topic>Ecology</topic><topic>Fish</topic><topic>Freshwater</topic><topic>Freshwater & Marine Ecology</topic><topic>Freshwater fish</topic><topic>Freshwater fishes</topic><topic>Gene expression</topic><topic>Inland water environment</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nucleotide sequence</topic><topic>Oreochromis niloticus</topic><topic>pH effects</topic><topic>protein synthesis</topic><topic>Proteins</topic><topic>quantitative polymerase chain reaction</topic><topic>Spectrophotometers</topic><topic>symporters</topic><topic>Tilapia</topic><topic>Time dependence</topic><topic>Western blotting</topic><topic>Whitefish</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Chengshuo</creatorcontrib><creatorcontrib>Zhou, Haotian</creatorcontrib><creatorcontrib>Song, Lingyuan</creatorcontrib><creatorcontrib>Tu, HanQing</creatorcontrib><creatorcontrib>Zhao, Jinliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yan</au><au>Wang, Yan</au><au>Zhang, Chengshuo</au><au>Zhou, Haotian</au><au>Song, Lingyuan</au><au>Tu, HanQing</au><au>Zhao, Jinliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>850</volume><issue>10-11</issue><spage>2447</spage><epage>2459</epage><pages>2447-2459</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>Metabolite changes in Nile tilapia in response to carbonate alkalinity stress were investigated by transferring the fish directly from freshwater into different carbonate alkaline water. Levels of plasma pH/HCO
3
−
concentration, the mRNA and protein expression of two carbonic anhydrases (CAhz and CAIV), and two HCO
3
−
transporters (Na
+
/HCO
3
−
cotransporter and Cl
−
/HCO
3
–
exchanger) in the gill, kidney, and intestine were determined using a pH meter, UV spectrophotometer, quantitative real-time PCR, and western blotting within 192 h of exposure. Plasma pH showed an “up-peak-down” variation, whereas HCO
3
−
concentration decreased at first and then increased in all alkaline water groups. The overall mRNA expression was regulated in an alkalinity- and time-dependent manner. Western blot results showed that the Cl
−
/HCO
3
−
exchanger protein was detected in all tissues examined, whereas the two carbonic anhydrases and Na
+
/HCO
3
−
cotransporter proteins were only expressed in the gill and kidney. Therefore, the studied carbonic anhydrases and HCO
3
−
transporters are involved in the HCO
3
−
metabolism and transport to maintain acid–base balance in Nile tilapia under carbonate alkalinity stress.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-022-05020-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4632-5647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2023-06, Vol.850 (10-11), p.2447-2459 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040461941 |
source | SpringerLink Journals |
subjects | acid-base balance Advances in Cichlid Research V Alkaline water Alkalinity Biomedical and Life Sciences carbonate dehydratase Carbonates Carbonic anhydrases Ecology Fish Freshwater Freshwater & Marine Ecology Freshwater fish Freshwater fishes Gene expression Inland water environment Intestine Intestines Kidneys Life Sciences Metabolism Metabolites Nucleotide sequence Oreochromis niloticus pH effects protein synthesis Proteins quantitative polymerase chain reaction Spectrophotometers symporters Tilapia Time dependence Western blotting Whitefish Zoology |
title | Variation in pH, HCO3−, carbonic anhydrases, and HCO3− transporters in Nile tilapia during carbonate alkalinity stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20in%20pH,%20HCO3%E2%88%92,%20carbonic%20anhydrases,%20and%20HCO3%E2%88%92%20transporters%20in%20Nile%20tilapia%20during%20carbonate%20alkalinity%20stress&rft.jtitle=Hydrobiologia&rft.au=Zhao,%20Yan&rft.date=2023-06-01&rft.volume=850&rft.issue=10-11&rft.spage=2447&rft.epage=2459&rft.pages=2447-2459&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-022-05020-6&rft_dat=%3Cproquest_cross%3E2825580991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825580991&rft_id=info:pmid/&rfr_iscdi=true |