“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte

The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active dit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-08, Vol.145 (31), p.16978-16982
Hauptverfasser: Xue, Huan, Zhao, Zhen-Hua, Liao, Pei-Qin, Chen, Xiao-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16982
container_issue 31
container_start_page 16978
container_title Journal of the American Chemical Society
container_volume 145
creator Xue, Huan
Zhao, Zhen-Hua
Liao, Pei-Qin
Chen, Xiao-Ming
description The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin­(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin­(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.
doi_str_mv 10.1021/jacs.3c05023
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040460916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040460916</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-35b64c1af288e3b3b0aa90cb30e8ffe7331ce67c54153c26d21e019e1e553d9e3</originalsourceid><addsrcrecordid>eNqFkc1OwkAUhSdGExHd-QCzxEVxfku7BAQlwbDwZ9tMp7c4WDo4M8S44xWMW305nsQSMS5d3ZzknC-5-RA6p6RLCaOXC6V9l2siCeMHqEUlI5GkLD5ELUIIi3pJzI_RifeLJgqW0BZ6324-757MKjJ1pKKBDaGC7eYLT-oAc6eCsTW2Jb4ywdSdyeMFvjMBPDZ1sFjhWwiq2m4-Zm6uaqPx2KklvFr3jEvr8MBa38zmeFSBDs46KNb6lzicsYaC-9oUzXDfqN4CnKKjUlUezva3jR7Go_vhTTSdXU-G_WmkmBQh4jKPhaaqZEkCPOc5USolOucEkrKEHudUQ9zTUlDJNYsLRoHQFChIyYsUeBt1frgrZ1_W4EO2NF5DVaka7NpnnAgiYpLS-N8qS4SIEypS9ldtVGQLu3Z180NGSbYTlO0EZXtB_BsKwobe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844681492</pqid></control><display><type>article</type><title>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</title><source>ACS Publications</source><creator>Xue, Huan ; Zhao, Zhen-Hua ; Liao, Pei-Qin ; Chen, Xiao-Ming</creator><creatorcontrib>Xue, Huan ; Zhao, Zhen-Hua ; Liao, Pei-Qin ; Chen, Xiao-Ming</creatorcontrib><description>The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin­(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin­(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c05023</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon dioxide ; carbonates ; coordination polymers ; electrochemistry ; electrolytes ; formic acid ; hydrogenation ; industry ; nanopores ; oxygen</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.16978-16982</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3353-7918 ; 0000-0001-5888-1283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c05023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c05023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xue, Huan</creatorcontrib><creatorcontrib>Zhao, Zhen-Hua</creatorcontrib><creatorcontrib>Liao, Pei-Qin</creatorcontrib><creatorcontrib>Chen, Xiao-Ming</creatorcontrib><title>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin­(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin­(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.</description><subject>carbon dioxide</subject><subject>carbonates</subject><subject>coordination polymers</subject><subject>electrochemistry</subject><subject>electrolytes</subject><subject>formic acid</subject><subject>hydrogenation</subject><subject>industry</subject><subject>nanopores</subject><subject>oxygen</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OwkAUhSdGExHd-QCzxEVxfku7BAQlwbDwZ9tMp7c4WDo4M8S44xWMW305nsQSMS5d3ZzknC-5-RA6p6RLCaOXC6V9l2siCeMHqEUlI5GkLD5ELUIIi3pJzI_RifeLJgqW0BZ6324-757MKjJ1pKKBDaGC7eYLT-oAc6eCsTW2Jb4ywdSdyeMFvjMBPDZ1sFjhWwiq2m4-Zm6uaqPx2KklvFr3jEvr8MBa38zmeFSBDs46KNb6lzicsYaC-9oUzXDfqN4CnKKjUlUezva3jR7Go_vhTTSdXU-G_WmkmBQh4jKPhaaqZEkCPOc5USolOucEkrKEHudUQ9zTUlDJNYsLRoHQFChIyYsUeBt1frgrZ1_W4EO2NF5DVaka7NpnnAgiYpLS-N8qS4SIEypS9ldtVGQLu3Z180NGSbYTlO0EZXtB_BsKwobe</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Xue, Huan</creator><creator>Zhao, Zhen-Hua</creator><creator>Liao, Pei-Qin</creator><creator>Chen, Xiao-Ming</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3353-7918</orcidid><orcidid>https://orcid.org/0000-0001-5888-1283</orcidid></search><sort><creationdate>20230809</creationdate><title>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</title><author>Xue, Huan ; Zhao, Zhen-Hua ; Liao, Pei-Qin ; Chen, Xiao-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-35b64c1af288e3b3b0aa90cb30e8ffe7331ce67c54153c26d21e019e1e553d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon dioxide</topic><topic>carbonates</topic><topic>coordination polymers</topic><topic>electrochemistry</topic><topic>electrolytes</topic><topic>formic acid</topic><topic>hydrogenation</topic><topic>industry</topic><topic>nanopores</topic><topic>oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Huan</creatorcontrib><creatorcontrib>Zhao, Zhen-Hua</creatorcontrib><creatorcontrib>Liao, Pei-Qin</creatorcontrib><creatorcontrib>Chen, Xiao-Ming</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Huan</au><au>Zhao, Zhen-Hua</au><au>Liao, Pei-Qin</au><au>Chen, Xiao-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>16978</spage><epage>16982</epage><pages>16978-16982</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin­(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin­(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c05023</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3353-7918</orcidid><orcidid>https://orcid.org/0000-0001-5888-1283</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.16978-16982
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3040460916
source ACS Publications
subjects carbon dioxide
carbonates
coordination polymers
electrochemistry
electrolytes
formic acid
hydrogenation
industry
nanopores
oxygen
title “Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CShip-in-a-Bottle%E2%80%9D%20Integration%20of%20Ditin(IV)%20Sites%20into%20a%20Metal%E2%80%93Organic%20Framework%20for%20Boosting%20Electroreduction%20of%20CO2%20in%20Acidic%20Electrolyte&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xue,%20Huan&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=16978&rft.epage=16982&rft.pages=16978-16982&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c05023&rft_dat=%3Cproquest_acs_j%3E3040460916%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844681492&rft_id=info:pmid/&rfr_iscdi=true