“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte
The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active dit...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-08, Vol.145 (31), p.16978-16982 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16982 |
---|---|
container_issue | 31 |
container_start_page | 16978 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Xue, Huan Zhao, Zhen-Hua Liao, Pei-Qin Chen, Xiao-Ming |
description | The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance. |
doi_str_mv | 10.1021/jacs.3c05023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040460916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040460916</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-35b64c1af288e3b3b0aa90cb30e8ffe7331ce67c54153c26d21e019e1e553d9e3</originalsourceid><addsrcrecordid>eNqFkc1OwkAUhSdGExHd-QCzxEVxfku7BAQlwbDwZ9tMp7c4WDo4M8S44xWMW305nsQSMS5d3ZzknC-5-RA6p6RLCaOXC6V9l2siCeMHqEUlI5GkLD5ELUIIi3pJzI_RifeLJgqW0BZ6324-757MKjJ1pKKBDaGC7eYLT-oAc6eCsTW2Jb4ywdSdyeMFvjMBPDZ1sFjhWwiq2m4-Zm6uaqPx2KklvFr3jEvr8MBa38zmeFSBDs46KNb6lzicsYaC-9oUzXDfqN4CnKKjUlUezva3jR7Go_vhTTSdXU-G_WmkmBQh4jKPhaaqZEkCPOc5USolOucEkrKEHudUQ9zTUlDJNYsLRoHQFChIyYsUeBt1frgrZ1_W4EO2NF5DVaka7NpnnAgiYpLS-N8qS4SIEypS9ldtVGQLu3Z180NGSbYTlO0EZXtB_BsKwobe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844681492</pqid></control><display><type>article</type><title>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</title><source>ACS Publications</source><creator>Xue, Huan ; Zhao, Zhen-Hua ; Liao, Pei-Qin ; Chen, Xiao-Ming</creator><creatorcontrib>Xue, Huan ; Zhao, Zhen-Hua ; Liao, Pei-Qin ; Chen, Xiao-Ming</creatorcontrib><description>The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c05023</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon dioxide ; carbonates ; coordination polymers ; electrochemistry ; electrolytes ; formic acid ; hydrogenation ; industry ; nanopores ; oxygen</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.16978-16982</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3353-7918 ; 0000-0001-5888-1283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c05023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c05023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xue, Huan</creatorcontrib><creatorcontrib>Zhao, Zhen-Hua</creatorcontrib><creatorcontrib>Liao, Pei-Qin</creatorcontrib><creatorcontrib>Chen, Xiao-Ming</creatorcontrib><title>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.</description><subject>carbon dioxide</subject><subject>carbonates</subject><subject>coordination polymers</subject><subject>electrochemistry</subject><subject>electrolytes</subject><subject>formic acid</subject><subject>hydrogenation</subject><subject>industry</subject><subject>nanopores</subject><subject>oxygen</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OwkAUhSdGExHd-QCzxEVxfku7BAQlwbDwZ9tMp7c4WDo4M8S44xWMW305nsQSMS5d3ZzknC-5-RA6p6RLCaOXC6V9l2siCeMHqEUlI5GkLD5ELUIIi3pJzI_RifeLJgqW0BZ6324-757MKjJ1pKKBDaGC7eYLT-oAc6eCsTW2Jb4ywdSdyeMFvjMBPDZ1sFjhWwiq2m4-Zm6uaqPx2KklvFr3jEvr8MBa38zmeFSBDs46KNb6lzicsYaC-9oUzXDfqN4CnKKjUlUezva3jR7Go_vhTTSdXU-G_WmkmBQh4jKPhaaqZEkCPOc5USolOucEkrKEHudUQ9zTUlDJNYsLRoHQFChIyYsUeBt1frgrZ1_W4EO2NF5DVaka7NpnnAgiYpLS-N8qS4SIEypS9ldtVGQLu3Z180NGSbYTlO0EZXtB_BsKwobe</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Xue, Huan</creator><creator>Zhao, Zhen-Hua</creator><creator>Liao, Pei-Qin</creator><creator>Chen, Xiao-Ming</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3353-7918</orcidid><orcidid>https://orcid.org/0000-0001-5888-1283</orcidid></search><sort><creationdate>20230809</creationdate><title>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</title><author>Xue, Huan ; Zhao, Zhen-Hua ; Liao, Pei-Qin ; Chen, Xiao-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-35b64c1af288e3b3b0aa90cb30e8ffe7331ce67c54153c26d21e019e1e553d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon dioxide</topic><topic>carbonates</topic><topic>coordination polymers</topic><topic>electrochemistry</topic><topic>electrolytes</topic><topic>formic acid</topic><topic>hydrogenation</topic><topic>industry</topic><topic>nanopores</topic><topic>oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Huan</creatorcontrib><creatorcontrib>Zhao, Zhen-Hua</creatorcontrib><creatorcontrib>Liao, Pei-Qin</creatorcontrib><creatorcontrib>Chen, Xiao-Ming</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Huan</au><au>Zhao, Zhen-Hua</au><au>Liao, Pei-Qin</au><au>Chen, Xiao-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>16978</spage><epage>16982</epage><pages>16978-16982</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin(IV) sites were integrated into the nanopores of a metal–organic framework, namely NU-1000-Sn, by a “ship-in-a-bottle” strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm–2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm–2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c05023</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3353-7918</orcidid><orcidid>https://orcid.org/0000-0001-5888-1283</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.16978-16982 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040460916 |
source | ACS Publications |
subjects | carbon dioxide carbonates coordination polymers electrochemistry electrolytes formic acid hydrogenation industry nanopores oxygen |
title | “Ship-in-a-Bottle” Integration of Ditin(IV) Sites into a Metal–Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CShip-in-a-Bottle%E2%80%9D%20Integration%20of%20Ditin(IV)%20Sites%20into%20a%20Metal%E2%80%93Organic%20Framework%20for%20Boosting%20Electroreduction%20of%20CO2%20in%20Acidic%20Electrolyte&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xue,%20Huan&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=16978&rft.epage=16982&rft.pages=16978-16982&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c05023&rft_dat=%3Cproquest_acs_j%3E3040460916%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844681492&rft_id=info:pmid/&rfr_iscdi=true |