Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus
Encapsulation of phages represents a key approach for improving phage stability and controlling phage delivery dosage. The hydrogel made from positively charged quaternized chitosan (QCS) and multivalent crosslinker, aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP) was introdu...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-12, Vol.253, p.127371-127371, Article 127371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127371 |
---|---|
container_issue | |
container_start_page | 127371 |
container_title | International journal of biological macromolecules |
container_volume | 253 |
creator | Wang, Reuben Yeh, Yu-Jia An, Yu-Ning Virly |
description | Encapsulation of phages represents a key approach for improving phage stability and controlling phage delivery dosage. The hydrogel made from positively charged quaternized chitosan (QCS) and multivalent crosslinker, aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP) was introduced for the first time for drug (phage 44AHJD) delivery. The freeze-thawing (FT) treatment enhanced the porous structure and the stress resistance of native hydrogel with increased compression stress (stiffness) from 10 to 20 kPa. The stiffness of the phage-loaded hydrogel (FTP) was suitable for the proper release of phage particles and polymer chains, both working synergistically against bacterial growth. The FTP followed the Korsmeyer-Peppas model's anomalous diffusion of phage particles at different temperatures (30–45 °C) and pH (6.6–8.5) conditions. FTP was sensitive to pH, which released more phage particles at pH-neutral conditions, while the release under acidic and alkaline conditions was more based on gel degradation. The high biocompatibility of FTP hydrogel at its working concentration of 30 mg mL−1 was demonstrated through a hemolysis ratio of |
doi_str_mv | 10.1016/j.ijbiomac.2023.127371 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040459116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014181302304268X</els_id><sourcerecordid>3040459116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a4d0a478818d3ce2b678f1896dd90634ed07f10052792ff24446ee7fd537bbcf3</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVoIG6SvxB07GVdaSWvtD3VmKQJBHJochZaaXYts5a2kjbFPyj_szJuoTnlNPDmvW8YHkI3lCwpoc3X3dLtOhf22ixrUrMlrQUT9AwtqBRtRQhhn9CCUE4rSRm5QJ9T2hW1WVG5QG-3fnAeIDo_4Om-SuCTy-4VMMRgXTcCNluXQ9Iebw82hgFGbMJ-CsVWdsFn7fwx3GmTCyZMWz3AN7z22PkiTKM-4A7yb4D_CNrb9wGsh8JJGf_MetoexmCCMXPCeo4wpyt03usxwfXfeYle7m6fN_fV49OPh836sTJMyFxpbonmQkoqLTNQd42QPZVtY21LGsbBEtFTQla1aOu-rznnDYDo7YqJrjM9u0RfTtwphl8zpKz2LhkYR-0hzEkxwglftZQ2H1prKQRrWblWrM3JamJIKUKvpuj2Oh4UJepYodqpfxWqY4XqVGEJfj8Fofz86iCqZBx4A9ZFMFnZ4D5C_AEVuazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877393100</pqid></control><display><type>article</type><title>Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Reuben ; Yeh, Yu-Jia ; An, Yu-Ning ; Virly</creator><creatorcontrib>Wang, Reuben ; Yeh, Yu-Jia ; An, Yu-Ning ; Virly</creatorcontrib><description>Encapsulation of phages represents a key approach for improving phage stability and controlling phage delivery dosage. The hydrogel made from positively charged quaternized chitosan (QCS) and multivalent crosslinker, aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP) was introduced for the first time for drug (phage 44AHJD) delivery. The freeze-thawing (FT) treatment enhanced the porous structure and the stress resistance of native hydrogel with increased compression stress (stiffness) from 10 to 20 kPa. The stiffness of the phage-loaded hydrogel (FTP) was suitable for the proper release of phage particles and polymer chains, both working synergistically against bacterial growth. The FTP followed the Korsmeyer-Peppas model's anomalous diffusion of phage particles at different temperatures (30–45 °C) and pH (6.6–8.5) conditions. FTP was sensitive to pH, which released more phage particles at pH-neutral conditions, while the release under acidic and alkaline conditions was more based on gel degradation. The high biocompatibility of FTP hydrogel at its working concentration of 30 mg mL−1 was demonstrated through a hemolysis ratio of <2 %. Sixty percent of the total encapsulated phages and 6 mg mL−1 of hydrogel debris were released after 10 h of hydrogel submerge treatment, which can fight the growing bacteria and the emergence of phage-resistant bacteria.
[Display omitted]
•Bacteriophage 44AHJD was used to create antibacterial hydrogels.•Freeze-thawing enhances hydrogel's porous structure and stiffness.•Phage-loaded QCS/APP hydrogel releases phage under buffers of different pHs.•Controlled release model shows anomalous diffusion, releasing 60 % phage particles.•Phage-containing hydrogel has low hemolytic activity, indicating safety.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2023.127371</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>bacterial growth ; bacteriophages ; biocompatibility ; Chitosan ; Controlled release ; drugs ; encapsulation ; hemolysis ; hydrogels ; Phage-resistant ; polymers ; Staphylococcus aureus ; stress tolerance ; xylitol</subject><ispartof>International journal of biological macromolecules, 2023-12, Vol.253, p.127371-127371, Article 127371</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a4d0a478818d3ce2b678f1896dd90634ed07f10052792ff24446ee7fd537bbcf3</citedby><cites>FETCH-LOGICAL-c378t-a4d0a478818d3ce2b678f1896dd90634ed07f10052792ff24446ee7fd537bbcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014181302304268X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Reuben</creatorcontrib><creatorcontrib>Yeh, Yu-Jia</creatorcontrib><creatorcontrib>An, Yu-Ning</creatorcontrib><creatorcontrib>Virly</creatorcontrib><title>Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus</title><title>International journal of biological macromolecules</title><description>Encapsulation of phages represents a key approach for improving phage stability and controlling phage delivery dosage. The hydrogel made from positively charged quaternized chitosan (QCS) and multivalent crosslinker, aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP) was introduced for the first time for drug (phage 44AHJD) delivery. The freeze-thawing (FT) treatment enhanced the porous structure and the stress resistance of native hydrogel with increased compression stress (stiffness) from 10 to 20 kPa. The stiffness of the phage-loaded hydrogel (FTP) was suitable for the proper release of phage particles and polymer chains, both working synergistically against bacterial growth. The FTP followed the Korsmeyer-Peppas model's anomalous diffusion of phage particles at different temperatures (30–45 °C) and pH (6.6–8.5) conditions. FTP was sensitive to pH, which released more phage particles at pH-neutral conditions, while the release under acidic and alkaline conditions was more based on gel degradation. The high biocompatibility of FTP hydrogel at its working concentration of 30 mg mL−1 was demonstrated through a hemolysis ratio of <2 %. Sixty percent of the total encapsulated phages and 6 mg mL−1 of hydrogel debris were released after 10 h of hydrogel submerge treatment, which can fight the growing bacteria and the emergence of phage-resistant bacteria.
[Display omitted]
•Bacteriophage 44AHJD was used to create antibacterial hydrogels.•Freeze-thawing enhances hydrogel's porous structure and stiffness.•Phage-loaded QCS/APP hydrogel releases phage under buffers of different pHs.•Controlled release model shows anomalous diffusion, releasing 60 % phage particles.•Phage-containing hydrogel has low hemolytic activity, indicating safety.</description><subject>bacterial growth</subject><subject>bacteriophages</subject><subject>biocompatibility</subject><subject>Chitosan</subject><subject>Controlled release</subject><subject>drugs</subject><subject>encapsulation</subject><subject>hemolysis</subject><subject>hydrogels</subject><subject>Phage-resistant</subject><subject>polymers</subject><subject>Staphylococcus aureus</subject><subject>stress tolerance</subject><subject>xylitol</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkUFrGzEQhUVoIG6SvxB07GVdaSWvtD3VmKQJBHJochZaaXYts5a2kjbFPyj_szJuoTnlNPDmvW8YHkI3lCwpoc3X3dLtOhf22ixrUrMlrQUT9AwtqBRtRQhhn9CCUE4rSRm5QJ9T2hW1WVG5QG-3fnAeIDo_4Om-SuCTy-4VMMRgXTcCNluXQ9Iebw82hgFGbMJ-CsVWdsFn7fwx3GmTCyZMWz3AN7z22PkiTKM-4A7yb4D_CNrb9wGsh8JJGf_MetoexmCCMXPCeo4wpyt03usxwfXfeYle7m6fN_fV49OPh836sTJMyFxpbonmQkoqLTNQd42QPZVtY21LGsbBEtFTQla1aOu-rznnDYDo7YqJrjM9u0RfTtwphl8zpKz2LhkYR-0hzEkxwglftZQ2H1prKQRrWblWrM3JamJIKUKvpuj2Oh4UJepYodqpfxWqY4XqVGEJfj8Fofz86iCqZBx4A9ZFMFnZ4D5C_AEVuazg</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Wang, Reuben</creator><creator>Yeh, Yu-Jia</creator><creator>An, Yu-Ning</creator><creator>Virly</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231231</creationdate><title>Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus</title><author>Wang, Reuben ; Yeh, Yu-Jia ; An, Yu-Ning ; Virly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a4d0a478818d3ce2b678f1896dd90634ed07f10052792ff24446ee7fd537bbcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bacterial growth</topic><topic>bacteriophages</topic><topic>biocompatibility</topic><topic>Chitosan</topic><topic>Controlled release</topic><topic>drugs</topic><topic>encapsulation</topic><topic>hemolysis</topic><topic>hydrogels</topic><topic>Phage-resistant</topic><topic>polymers</topic><topic>Staphylococcus aureus</topic><topic>stress tolerance</topic><topic>xylitol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Reuben</creatorcontrib><creatorcontrib>Yeh, Yu-Jia</creatorcontrib><creatorcontrib>An, Yu-Ning</creatorcontrib><creatorcontrib>Virly</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Reuben</au><au>Yeh, Yu-Jia</au><au>An, Yu-Ning</au><au>Virly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>253</volume><spage>127371</spage><epage>127371</epage><pages>127371-127371</pages><artnum>127371</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Encapsulation of phages represents a key approach for improving phage stability and controlling phage delivery dosage. The hydrogel made from positively charged quaternized chitosan (QCS) and multivalent crosslinker, aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP) was introduced for the first time for drug (phage 44AHJD) delivery. The freeze-thawing (FT) treatment enhanced the porous structure and the stress resistance of native hydrogel with increased compression stress (stiffness) from 10 to 20 kPa. The stiffness of the phage-loaded hydrogel (FTP) was suitable for the proper release of phage particles and polymer chains, both working synergistically against bacterial growth. The FTP followed the Korsmeyer-Peppas model's anomalous diffusion of phage particles at different temperatures (30–45 °C) and pH (6.6–8.5) conditions. FTP was sensitive to pH, which released more phage particles at pH-neutral conditions, while the release under acidic and alkaline conditions was more based on gel degradation. The high biocompatibility of FTP hydrogel at its working concentration of 30 mg mL−1 was demonstrated through a hemolysis ratio of <2 %. Sixty percent of the total encapsulated phages and 6 mg mL−1 of hydrogel debris were released after 10 h of hydrogel submerge treatment, which can fight the growing bacteria and the emergence of phage-resistant bacteria.
[Display omitted]
•Bacteriophage 44AHJD was used to create antibacterial hydrogels.•Freeze-thawing enhances hydrogel's porous structure and stiffness.•Phage-loaded QCS/APP hydrogel releases phage under buffers of different pHs.•Controlled release model shows anomalous diffusion, releasing 60 % phage particles.•Phage-containing hydrogel has low hemolytic activity, indicating safety.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2023.127371</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2023-12, Vol.253, p.127371-127371, Article 127371 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040459116 |
source | Elsevier ScienceDirect Journals |
subjects | bacterial growth bacteriophages biocompatibility Chitosan Controlled release drugs encapsulation hemolysis hydrogels Phage-resistant polymers Staphylococcus aureus stress tolerance xylitol |
title | Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20pH-sensitive%20erodible%20chitosan%20hydrogel%20composite%20containing%20bacteriophage:%20An%20interplay%20between%20hydrogel%20and%20bacteriophage%20against%20Staphylococcus%20aureus&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Wang,%20Reuben&rft.date=2023-12-31&rft.volume=253&rft.spage=127371&rft.epage=127371&rft.pages=127371-127371&rft.artnum=127371&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2023.127371&rft_dat=%3Cproquest_cross%3E3040459116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877393100&rft_id=info:pmid/&rft_els_id=S014181302304268X&rfr_iscdi=true |