Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L
Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-09, Vol.332, p.121958-121958, Article 121958 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121958 |
---|---|
container_issue | |
container_start_page | 121958 |
container_title | Environmental pollution (1987) |
container_volume | 332 |
creator | Yang, Xiaoxiao Ren, Jianhong Yang, Wenping Xue, Jianfu Gao, Zhiqiang Yang, Zhenping |
description | Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We showed that treatment with sodium hydrosulfide (NaHS, a donor of H2S) partially alleviated Cr-induced growth inhibition. However, Cr uptake was not affected. RNA sequencing suggested that H2S regulates the expression of many genes involved in pectin biosynthesis, glutathione metabolism, and redox homeostasis. Under Cr stress, NaHS treatment significantly increased pectin content and pectin methylesterase activity; thus, more Cr was retained in the cell wall. NaHS application also increased the content of glutathione and phytochelatin, which chelate Cr and transport it into vacuoles for sequestration. Furthermore, NaHS treatment mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Overall, our results strongly support that H2S alleviates Cr toxicity in maize by promoting Cr sequestration and re-establishing redox homeostasis rather than by reducing Cr uptake from the environment.
F0B7H2S alleviates Cr-induced growth inhibition in maize plants.F0B7H2S increased pectin content and pectin methylesterase activity, retaining more Cr in the cell wall.F0B7H2S enhanced the GSH and phytochelatin contents to chelate excess Cr, leading to more Cr in the vacuole.F0B7H2S mitigates Cr-induced oxidative stress by increasing antioxidant defence. |
doi_str_mv | 10.1016/j.envpol.2023.121958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040427789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749123009600</els_id><sourcerecordid>2823991821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-35f7a13a82f3c836b5aadc3840c731a7138b2ed66accd03aa4a530ad7ffe58303</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0EYsvCGyDkI5cU2-MkzgUJrYBFqsQFLlysiT3ZukriYqfV5gF4b1KywA1Olv75xjP2x9hLKbZSyOrNYUvj-Rj7rRIKtlLJpjSP2EaaGopKK_2YbYSqmqLWjbxiz3I-CCE0ADxlV1ArUy3VDftxO_sU72jk-dR3wRPHvqdzwIkyd_sUh3Aa-BTvgwvTzNuZH5csTmG8-1vO9P1EeUo4hThyHD1PVCwBtn3I-wuayMd7vo8DxSXOIfMw8m-EfMA5891z9qTDPtOLh_Oaff3w_svNbbH7_PHTzbtd4bSWUwFlV6MENKoDZ6BqS0TvwGjhapBYSzCtIl9V6JwXgKixBIG-7joqDQi4Zq_Xe5dH_FrZDiE76nscKZ6yBaGFVnVtmv-iyihoGmmUXFC9oi7FnBN19pjCgGm2UtiLK3uwqyt7cWVXV0vbq4cJp3Yg_6fpt5wFeLsCtHzJOVCy2QUaHfmQyE3Wx_DvCT8Bc_2qmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823991821</pqid></control><display><type>article</type><title>Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Xiaoxiao ; Ren, Jianhong ; Yang, Wenping ; Xue, Jianfu ; Gao, Zhiqiang ; Yang, Zhenping</creator><creatorcontrib>Yang, Xiaoxiao ; Ren, Jianhong ; Yang, Wenping ; Xue, Jianfu ; Gao, Zhiqiang ; Yang, Zhenping</creatorcontrib><description>Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We showed that treatment with sodium hydrosulfide (NaHS, a donor of H2S) partially alleviated Cr-induced growth inhibition. However, Cr uptake was not affected. RNA sequencing suggested that H2S regulates the expression of many genes involved in pectin biosynthesis, glutathione metabolism, and redox homeostasis. Under Cr stress, NaHS treatment significantly increased pectin content and pectin methylesterase activity; thus, more Cr was retained in the cell wall. NaHS application also increased the content of glutathione and phytochelatin, which chelate Cr and transport it into vacuoles for sequestration. Furthermore, NaHS treatment mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Overall, our results strongly support that H2S alleviates Cr toxicity in maize by promoting Cr sequestration and re-establishing redox homeostasis rather than by reducing Cr uptake from the environment.
F0B7H2S alleviates Cr-induced growth inhibition in maize plants.F0B7H2S increased pectin content and pectin methylesterase activity, retaining more Cr in the cell wall.F0B7H2S enhanced the GSH and phytochelatin contents to chelate excess Cr, leading to more Cr in the vacuole.F0B7H2S mitigates Cr-induced oxidative stress by increasing antioxidant defence.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2023.121958</identifier><identifier>PMID: 37286026</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antioxidant ; biosynthesis ; Cell wall ; cell walls ; Chelation ; chromium ; corn ; Cr stress ; glutathione ; growth retardation ; H2S ; homeostasis ; hydrogen sulfide ; oxidative stress ; pectinesterase ; pectins ; pollution ; RNA ; sodium ; toxicity ; Transcriptome ; transcriptomics ; Zea mays</subject><ispartof>Environmental pollution (1987), 2023-09, Vol.332, p.121958-121958, Article 121958</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-35f7a13a82f3c836b5aadc3840c731a7138b2ed66accd03aa4a530ad7ffe58303</citedby><cites>FETCH-LOGICAL-c441t-35f7a13a82f3c836b5aadc3840c731a7138b2ed66accd03aa4a530ad7ffe58303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envpol.2023.121958$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37286026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Ren, Jianhong</creatorcontrib><creatorcontrib>Yang, Wenping</creatorcontrib><creatorcontrib>Xue, Jianfu</creatorcontrib><creatorcontrib>Gao, Zhiqiang</creatorcontrib><creatorcontrib>Yang, Zhenping</creatorcontrib><title>Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We showed that treatment with sodium hydrosulfide (NaHS, a donor of H2S) partially alleviated Cr-induced growth inhibition. However, Cr uptake was not affected. RNA sequencing suggested that H2S regulates the expression of many genes involved in pectin biosynthesis, glutathione metabolism, and redox homeostasis. Under Cr stress, NaHS treatment significantly increased pectin content and pectin methylesterase activity; thus, more Cr was retained in the cell wall. NaHS application also increased the content of glutathione and phytochelatin, which chelate Cr and transport it into vacuoles for sequestration. Furthermore, NaHS treatment mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Overall, our results strongly support that H2S alleviates Cr toxicity in maize by promoting Cr sequestration and re-establishing redox homeostasis rather than by reducing Cr uptake from the environment.
F0B7H2S alleviates Cr-induced growth inhibition in maize plants.F0B7H2S increased pectin content and pectin methylesterase activity, retaining more Cr in the cell wall.F0B7H2S enhanced the GSH and phytochelatin contents to chelate excess Cr, leading to more Cr in the vacuole.F0B7H2S mitigates Cr-induced oxidative stress by increasing antioxidant defence.</description><subject>Antioxidant</subject><subject>biosynthesis</subject><subject>Cell wall</subject><subject>cell walls</subject><subject>Chelation</subject><subject>chromium</subject><subject>corn</subject><subject>Cr stress</subject><subject>glutathione</subject><subject>growth retardation</subject><subject>H2S</subject><subject>homeostasis</subject><subject>hydrogen sulfide</subject><subject>oxidative stress</subject><subject>pectinesterase</subject><subject>pectins</subject><subject>pollution</subject><subject>RNA</subject><subject>sodium</subject><subject>toxicity</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>Zea mays</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcGO0zAQhi0EYsvCGyDkI5cU2-MkzgUJrYBFqsQFLlysiT3ZukriYqfV5gF4b1KywA1Olv75xjP2x9hLKbZSyOrNYUvj-Rj7rRIKtlLJpjSP2EaaGopKK_2YbYSqmqLWjbxiz3I-CCE0ADxlV1ArUy3VDftxO_sU72jk-dR3wRPHvqdzwIkyd_sUh3Aa-BTvgwvTzNuZH5csTmG8-1vO9P1EeUo4hThyHD1PVCwBtn3I-wuayMd7vo8DxSXOIfMw8m-EfMA5891z9qTDPtOLh_Oaff3w_svNbbH7_PHTzbtd4bSWUwFlV6MENKoDZ6BqS0TvwGjhapBYSzCtIl9V6JwXgKixBIG-7joqDQi4Zq_Xe5dH_FrZDiE76nscKZ6yBaGFVnVtmv-iyihoGmmUXFC9oi7FnBN19pjCgGm2UtiLK3uwqyt7cWVXV0vbq4cJp3Yg_6fpt5wFeLsCtHzJOVCy2QUaHfmQyE3Wx_DvCT8Bc_2qmg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Yang, Xiaoxiao</creator><creator>Ren, Jianhong</creator><creator>Yang, Wenping</creator><creator>Xue, Jianfu</creator><creator>Gao, Zhiqiang</creator><creator>Yang, Zhenping</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230901</creationdate><title>Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L</title><author>Yang, Xiaoxiao ; Ren, Jianhong ; Yang, Wenping ; Xue, Jianfu ; Gao, Zhiqiang ; Yang, Zhenping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-35f7a13a82f3c836b5aadc3840c731a7138b2ed66accd03aa4a530ad7ffe58303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antioxidant</topic><topic>biosynthesis</topic><topic>Cell wall</topic><topic>cell walls</topic><topic>Chelation</topic><topic>chromium</topic><topic>corn</topic><topic>Cr stress</topic><topic>glutathione</topic><topic>growth retardation</topic><topic>H2S</topic><topic>homeostasis</topic><topic>hydrogen sulfide</topic><topic>oxidative stress</topic><topic>pectinesterase</topic><topic>pectins</topic><topic>pollution</topic><topic>RNA</topic><topic>sodium</topic><topic>toxicity</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Ren, Jianhong</creatorcontrib><creatorcontrib>Yang, Wenping</creatorcontrib><creatorcontrib>Xue, Jianfu</creatorcontrib><creatorcontrib>Gao, Zhiqiang</creatorcontrib><creatorcontrib>Yang, Zhenping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaoxiao</au><au>Ren, Jianhong</au><au>Yang, Wenping</au><au>Xue, Jianfu</au><au>Gao, Zhiqiang</au><au>Yang, Zhenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>332</volume><spage>121958</spage><epage>121958</epage><pages>121958-121958</pages><artnum>121958</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We showed that treatment with sodium hydrosulfide (NaHS, a donor of H2S) partially alleviated Cr-induced growth inhibition. However, Cr uptake was not affected. RNA sequencing suggested that H2S regulates the expression of many genes involved in pectin biosynthesis, glutathione metabolism, and redox homeostasis. Under Cr stress, NaHS treatment significantly increased pectin content and pectin methylesterase activity; thus, more Cr was retained in the cell wall. NaHS application also increased the content of glutathione and phytochelatin, which chelate Cr and transport it into vacuoles for sequestration. Furthermore, NaHS treatment mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Overall, our results strongly support that H2S alleviates Cr toxicity in maize by promoting Cr sequestration and re-establishing redox homeostasis rather than by reducing Cr uptake from the environment.
F0B7H2S alleviates Cr-induced growth inhibition in maize plants.F0B7H2S increased pectin content and pectin methylesterase activity, retaining more Cr in the cell wall.F0B7H2S enhanced the GSH and phytochelatin contents to chelate excess Cr, leading to more Cr in the vacuole.F0B7H2S mitigates Cr-induced oxidative stress by increasing antioxidant defence.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37286026</pmid><doi>10.1016/j.envpol.2023.121958</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7491 |
ispartof | Environmental pollution (1987), 2023-09, Vol.332, p.121958-121958, Article 121958 |
issn | 0269-7491 1873-6424 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040427789 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Antioxidant biosynthesis Cell wall cell walls Chelation chromium corn Cr stress glutathione growth retardation H2S homeostasis hydrogen sulfide oxidative stress pectinesterase pectins pollution RNA sodium toxicity Transcriptome transcriptomics Zea mays |
title | Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20sulfide%20alleviates%20chromium%20toxicity%20by%20promoting%20chromium%20sequestration%20and%20re-establishing%20redox%20homeostasis%20in%20Zea%20mays%20L&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Yang,%20Xiaoxiao&rft.date=2023-09-01&rft.volume=332&rft.spage=121958&rft.epage=121958&rft.pages=121958-121958&rft.artnum=121958&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2023.121958&rft_dat=%3Cproquest_cross%3E2823991821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823991821&rft_id=info:pmid/37286026&rft_els_id=S0269749123009600&rfr_iscdi=true |