Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends

Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2023-07, Vol.415 (18), p.3945-3966
Hauptverfasser: dos Santos, Diego P., Sena, Marcelo M., Almeida, Mariana R., Mazali, Italo O., Olivieri, Alejandro C., Villa, Javier E. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3966
container_issue 18
container_start_page 3945
container_title Analytical and bioanalytical chemistry
container_volume 415
creator dos Santos, Diego P.
Sena, Marcelo M.
Almeida, Mariana R.
Mazali, Italo O.
Olivieri, Alejandro C.
Villa, Javier E. L.
description Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications. Graphical Abstract
doi_str_mv 10.1007/s00216-023-04620-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040423134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756433897</galeid><sourcerecordid>A756433897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-87084190dfaacb94e62a251fb3b913010754958ccdaec3b2c44d1fce524268853</originalsourceid><addsrcrecordid>eNqFkU9r1UAUxYMotla_gAsZcOOiqXf-JJm4K8WqUBDErofJzU1eSjJ5ziTC2_rJvc_UCi6UWcxl-J3DmXuy7KWECwlQvU0ASpY5KJ2DKRXkh0fZqSylzVVZwOOH2aiT7FlKdwCysLJ8mp3o0pZGS32a_bgN0X-ncQi9SGvsPFJOYecDUiu--MkHkfaES5wTzvuDiJTWcUli2cV57XcCdzTNEy1xwCR8aMXkcTcEEiP5GNj1ndjHIeCwHymd8zz3bMHTkV0ihTY9z550fkz04v4-y26v33-9-pjffP7w6eryJkdTyyW3FVgja2g777GpDZXKq0J2jW5qqUFCVZi6sIitJ9SNQmNa2SEVyqjS2kKfZW82Xw7xbaW0uGlISOPoA81rchoMGMVbMf9FVWW1qcECMPr6L_RuXmPgjzjFkDZWVzVTFxvV-5HcELp5iR75tDQNOAfqBn6_rAquRdu6YoHaBMibT5E6x2ucfDw4Ce7Yvtvad9y--9W-O7Do1X2WtZmofZD8rpsBvQHpWEpP8U_Yf9j-BNgSu-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834348379</pqid></control><display><type>article</type><title>Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends</title><source>Springer Nature - Complete Springer Journals</source><creator>dos Santos, Diego P. ; Sena, Marcelo M. ; Almeida, Mariana R. ; Mazali, Italo O. ; Olivieri, Alejandro C. ; Villa, Javier E. L.</creator><creatorcontrib>dos Santos, Diego P. ; Sena, Marcelo M. ; Almeida, Mariana R. ; Mazali, Italo O. ; Olivieri, Alejandro C. ; Villa, Javier E. L.</creatorcontrib><description>Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications. Graphical Abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>ISSN: 1618-2650</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-023-04620-y</identifier><identifier>PMID: 36864313</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Analytical Chemistry ; Artificial Intelligence ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chemometrics ; Critical Review ; Data analysis ; food safety ; Food Science ; Forensic science ; forensic sciences ; Laboratory Medicine ; Learning algorithms ; Machine Learning ; Mathematical analysis ; Methods ; Microbiology ; Monitoring/Environmental Analysis ; Multivariate analysis ; Principles ; Qualitative analysis ; Raman spectroscopy ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Standardization ; Statistical analysis ; Trends ; Young Investigators in (Bio-)Analytical Chemistry 2023</subject><ispartof>Analytical and bioanalytical chemistry, 2023-07, Vol.415 (18), p.3945-3966</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-87084190dfaacb94e62a251fb3b913010754958ccdaec3b2c44d1fce524268853</citedby><cites>FETCH-LOGICAL-c491t-87084190dfaacb94e62a251fb3b913010754958ccdaec3b2c44d1fce524268853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-023-04620-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-023-04620-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36864313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>dos Santos, Diego P.</creatorcontrib><creatorcontrib>Sena, Marcelo M.</creatorcontrib><creatorcontrib>Almeida, Mariana R.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><creatorcontrib>Olivieri, Alejandro C.</creatorcontrib><creatorcontrib>Villa, Javier E. L.</creatorcontrib><title>Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications. Graphical Abstract</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Artificial Intelligence</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemometrics</subject><subject>Critical Review</subject><subject>Data analysis</subject><subject>food safety</subject><subject>Food Science</subject><subject>Forensic science</subject><subject>forensic sciences</subject><subject>Laboratory Medicine</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multivariate analysis</subject><subject>Principles</subject><subject>Qualitative analysis</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Standardization</subject><subject>Statistical analysis</subject><subject>Trends</subject><subject>Young Investigators in (Bio-)Analytical Chemistry 2023</subject><issn>1618-2642</issn><issn>1618-2650</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU9r1UAUxYMotla_gAsZcOOiqXf-JJm4K8WqUBDErofJzU1eSjJ5ziTC2_rJvc_UCi6UWcxl-J3DmXuy7KWECwlQvU0ASpY5KJ2DKRXkh0fZqSylzVVZwOOH2aiT7FlKdwCysLJ8mp3o0pZGS32a_bgN0X-ncQi9SGvsPFJOYecDUiu--MkHkfaES5wTzvuDiJTWcUli2cV57XcCdzTNEy1xwCR8aMXkcTcEEiP5GNj1ndjHIeCwHymd8zz3bMHTkV0ihTY9z550fkz04v4-y26v33-9-pjffP7w6eryJkdTyyW3FVgja2g777GpDZXKq0J2jW5qqUFCVZi6sIitJ9SNQmNa2SEVyqjS2kKfZW82Xw7xbaW0uGlISOPoA81rchoMGMVbMf9FVWW1qcECMPr6L_RuXmPgjzjFkDZWVzVTFxvV-5HcELp5iR75tDQNOAfqBn6_rAquRdu6YoHaBMibT5E6x2ucfDw4Ce7Yvtvad9y--9W-O7Do1X2WtZmofZD8rpsBvQHpWEpP8U_Yf9j-BNgSu-0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>dos Santos, Diego P.</creator><creator>Sena, Marcelo M.</creator><creator>Almeida, Mariana R.</creator><creator>Mazali, Italo O.</creator><creator>Olivieri, Alejandro C.</creator><creator>Villa, Javier E. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230701</creationdate><title>Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends</title><author>dos Santos, Diego P. ; Sena, Marcelo M. ; Almeida, Mariana R. ; Mazali, Italo O. ; Olivieri, Alejandro C. ; Villa, Javier E. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-87084190dfaacb94e62a251fb3b913010754958ccdaec3b2c44d1fce524268853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Artificial Intelligence</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemometrics</topic><topic>Critical Review</topic><topic>Data analysis</topic><topic>food safety</topic><topic>Food Science</topic><topic>Forensic science</topic><topic>forensic sciences</topic><topic>Laboratory Medicine</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multivariate analysis</topic><topic>Principles</topic><topic>Qualitative analysis</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Standardization</topic><topic>Statistical analysis</topic><topic>Trends</topic><topic>Young Investigators in (Bio-)Analytical Chemistry 2023</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Diego P.</creatorcontrib><creatorcontrib>Sena, Marcelo M.</creatorcontrib><creatorcontrib>Almeida, Mariana R.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><creatorcontrib>Olivieri, Alejandro C.</creatorcontrib><creatorcontrib>Villa, Javier E. L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Diego P.</au><au>Sena, Marcelo M.</au><au>Almeida, Mariana R.</au><au>Mazali, Italo O.</au><au>Olivieri, Alejandro C.</au><au>Villa, Javier E. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>415</volume><issue>18</issue><spage>3945</spage><epage>3966</epage><pages>3945-3966</pages><issn>1618-2642</issn><issn>1618-2650</issn><eissn>1618-2650</eissn><abstract>Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36864313</pmid><doi>10.1007/s00216-023-04620-y</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2023-07, Vol.415 (18), p.3945-3966
issn 1618-2642
1618-2650
1618-2650
language eng
recordid cdi_proquest_miscellaneous_3040423134
source Springer Nature - Complete Springer Journals
subjects Analysis
Analytical Chemistry
Artificial Intelligence
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chemometrics
Critical Review
Data analysis
food safety
Food Science
Forensic science
forensic sciences
Laboratory Medicine
Learning algorithms
Machine Learning
Mathematical analysis
Methods
Microbiology
Monitoring/Environmental Analysis
Multivariate analysis
Principles
Qualitative analysis
Raman spectroscopy
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman - methods
Standardization
Statistical analysis
Trends
Young Investigators in (Bio-)Analytical Chemistry 2023
title Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20surface-enhanced%20Raman%20spectroscopy%20results%20through%20chemometrics%20and%20machine%20learning:%20principles,%20progress,%20and%20trends&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=dos%20Santos,%20Diego%20P.&rft.date=2023-07-01&rft.volume=415&rft.issue=18&rft.spage=3945&rft.epage=3966&rft.pages=3945-3966&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-023-04620-y&rft_dat=%3Cgale_proqu%3EA756433897%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834348379&rft_id=info:pmid/36864313&rft_galeid=A756433897&rfr_iscdi=true