Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1

We examine impacts of the Madden–Julian Oscillation (MJO) on Australian springtime temperatures and extremes, explore the mechanisms behind the teleconnections, and assess their prediction in retrospective forecasts using the Bureau of Meteorology’s ACCESS-S1 dynamical forecast system. The MJO incit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2023-07, Vol.61 (1-2), p.431-447
Hauptverfasser: Marshall, Andrew G., Wang, Guomin, Hendon, Harry H., Lin, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 1-2
container_start_page 431
container_title Climate dynamics
container_volume 61
creator Marshall, Andrew G.
Wang, Guomin
Hendon, Harry H.
Lin, Hai
description We examine impacts of the Madden–Julian Oscillation (MJO) on Australian springtime temperatures and extremes, explore the mechanisms behind the teleconnections, and assess their prediction in retrospective forecasts using the Bureau of Meteorology’s ACCESS-S1 dynamical forecast system. The MJO incites strong and significant warming across southern Australia in phases 2, 3 and 4 when its active convection propagates over the Indian Ocean and Maritime Continent. The heat signal appears strongest in south-eastern Australia during MJO phases 2 and 3 in the vicinity of a deep anticyclonic anomaly which brings warmer airflow to south-western Australia while promoting shortwave radiative heating in the southeast. This occurs as part of a Rossby wave train that emanates from the Indian Ocean and disperses across the Southern Hemisphere along a great circle route towards South America, in response to MJO convective heating on the equator. Importantly, we show the wave train emerges from the divergent outflow from anomalous MJO convection, rather than from the Rossby waves that exist within the MJO's baroclinic structure. Feedbacks between transient eddies and the low frequency flow to the south of Australia and southeast of South America reinforce the wave train in phases 1–3 but act against it during its demise in phase 4. The MJO is a source of subseasonal predictability of springtime heat and cold events over southern Australia in ACCESS-S1 at lead times of 2–4 weeks, yet there remains room for improvement in the model's depiction of the MJO and its teleconnection to the Southern Hemisphere.
doi_str_mv 10.1007/s00382-022-06586-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040421194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A753893328</galeid><sourcerecordid>A753893328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-9bda545d1ac3d9e47d7a7a846d5f8f17daa4cdf0fc1836089f2c4c48bb20e923</originalsourceid><addsrcrecordid>eNp9ks-KFDEQxhtRcNz1BTwFBNFD7-Zfd9LHYdjVlZUFZ-8hk1TPZOlOxiQNyl58B9_QJzEzLeh4kBBChV8VVV99VfWK4AuCsbhMGDNJa0zLbRvZ1u2TakE4K6Hs-NNqgTuGa9GI5nn1IqUHjAlvBV1Uj5-0teB_fv_xcRqc9uguGTcMOrvgUYYBTPAezCFMKAe0nFKO-kimfXR-m90IBRz3EHWeIiD4miOMkJD2FuUduIj2Eaw71kDOo-VqdbVe12tyXj3r9ZDg5e_3rLq_vrpffahv797frJa3teFNm-tuY3XDG0u0YbYDLqzQQkve2qaXPRFWa25sj3tDJGvLvD013HC52VAMHWVn1du57D6GLxOkrEaXDJQhPYQpKYY55pSQjhf09T_oQ5iiL80pKqmQRUXaFupiprZ6AOV8H4okphwLoyt6Qe_K_1I0THaMUVkS3p0kFCYXmbZ6SkndrD-fsm_-Ynegh7xLYZiOGzgF6QyaGFKK0Kuyj1HHb4pgdTCFmk2hiinU0RTq0Dqbk-blQfwz4H-yfgEkZrri</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827809326</pqid></control><display><type>article</type><title>Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1</title><source>SpringerLink Journals - AutoHoldings</source><creator>Marshall, Andrew G. ; Wang, Guomin ; Hendon, Harry H. ; Lin, Hai</creator><creatorcontrib>Marshall, Andrew G. ; Wang, Guomin ; Hendon, Harry H. ; Lin, Hai</creatorcontrib><description>We examine impacts of the Madden–Julian Oscillation (MJO) on Australian springtime temperatures and extremes, explore the mechanisms behind the teleconnections, and assess their prediction in retrospective forecasts using the Bureau of Meteorology’s ACCESS-S1 dynamical forecast system. The MJO incites strong and significant warming across southern Australia in phases 2, 3 and 4 when its active convection propagates over the Indian Ocean and Maritime Continent. The heat signal appears strongest in south-eastern Australia during MJO phases 2 and 3 in the vicinity of a deep anticyclonic anomaly which brings warmer airflow to south-western Australia while promoting shortwave radiative heating in the southeast. This occurs as part of a Rossby wave train that emanates from the Indian Ocean and disperses across the Southern Hemisphere along a great circle route towards South America, in response to MJO convective heating on the equator. Importantly, we show the wave train emerges from the divergent outflow from anomalous MJO convection, rather than from the Rossby waves that exist within the MJO's baroclinic structure. Feedbacks between transient eddies and the low frequency flow to the south of Australia and southeast of South America reinforce the wave train in phases 1–3 but act against it during its demise in phase 4. The MJO is a source of subseasonal predictability of springtime heat and cold events over southern Australia in ACCESS-S1 at lead times of 2–4 weeks, yet there remains room for improvement in the model's depiction of the MJO and its teleconnection to the Southern Hemisphere.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-022-06586-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air flow ; Analysis ; Australia ; Baroclinic flow ; Climate change ; Climatology ; cold ; Convection ; Convective heating ; Dynamic meteorology ; Earth and Environmental Science ; Earth Sciences ; Eddies ; Environmental aspects ; Equator ; Geophysics/Geodesy ; Great circles ; Heat ; Heating ; Indian Ocean ; Madden-Julian Oscillation ; Meteorology ; Methods ; Oceanography ; Oceans ; Outflow ; Phases ; Planetary waves ; prediction ; Radiation ; Radiative heating ; Rain ; Rossby waves ; South America ; Southern Hemisphere ; spring ; Teleconnections ; Teleconnections (Climatology) ; Temperature ; Temperature extremes ; Wave packets ; Wave trains ; Weather ; Weather forecasting</subject><ispartof>Climate dynamics, 2023-07, Vol.61 (1-2), p.431-447</ispartof><rights>Crown 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Crown 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-9bda545d1ac3d9e47d7a7a846d5f8f17daa4cdf0fc1836089f2c4c48bb20e923</citedby><cites>FETCH-LOGICAL-c456t-9bda545d1ac3d9e47d7a7a846d5f8f17daa4cdf0fc1836089f2c4c48bb20e923</cites><orcidid>0000-0003-4902-1462 ; 0000-0002-1158-2427 ; 0000-0002-4378-2263 ; 0000-0003-4353-0426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-022-06586-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-022-06586-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marshall, Andrew G.</creatorcontrib><creatorcontrib>Wang, Guomin</creatorcontrib><creatorcontrib>Hendon, Harry H.</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><title>Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>We examine impacts of the Madden–Julian Oscillation (MJO) on Australian springtime temperatures and extremes, explore the mechanisms behind the teleconnections, and assess their prediction in retrospective forecasts using the Bureau of Meteorology’s ACCESS-S1 dynamical forecast system. The MJO incites strong and significant warming across southern Australia in phases 2, 3 and 4 when its active convection propagates over the Indian Ocean and Maritime Continent. The heat signal appears strongest in south-eastern Australia during MJO phases 2 and 3 in the vicinity of a deep anticyclonic anomaly which brings warmer airflow to south-western Australia while promoting shortwave radiative heating in the southeast. This occurs as part of a Rossby wave train that emanates from the Indian Ocean and disperses across the Southern Hemisphere along a great circle route towards South America, in response to MJO convective heating on the equator. Importantly, we show the wave train emerges from the divergent outflow from anomalous MJO convection, rather than from the Rossby waves that exist within the MJO's baroclinic structure. Feedbacks between transient eddies and the low frequency flow to the south of Australia and southeast of South America reinforce the wave train in phases 1–3 but act against it during its demise in phase 4. The MJO is a source of subseasonal predictability of springtime heat and cold events over southern Australia in ACCESS-S1 at lead times of 2–4 weeks, yet there remains room for improvement in the model's depiction of the MJO and its teleconnection to the Southern Hemisphere.</description><subject>Air flow</subject><subject>Analysis</subject><subject>Australia</subject><subject>Baroclinic flow</subject><subject>Climate change</subject><subject>Climatology</subject><subject>cold</subject><subject>Convection</subject><subject>Convective heating</subject><subject>Dynamic meteorology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eddies</subject><subject>Environmental aspects</subject><subject>Equator</subject><subject>Geophysics/Geodesy</subject><subject>Great circles</subject><subject>Heat</subject><subject>Heating</subject><subject>Indian Ocean</subject><subject>Madden-Julian Oscillation</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Outflow</subject><subject>Phases</subject><subject>Planetary waves</subject><subject>prediction</subject><subject>Radiation</subject><subject>Radiative heating</subject><subject>Rain</subject><subject>Rossby waves</subject><subject>South America</subject><subject>Southern Hemisphere</subject><subject>spring</subject><subject>Teleconnections</subject><subject>Teleconnections (Climatology)</subject><subject>Temperature</subject><subject>Temperature extremes</subject><subject>Wave packets</subject><subject>Wave trains</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9ks-KFDEQxhtRcNz1BTwFBNFD7-Zfd9LHYdjVlZUFZ-8hk1TPZOlOxiQNyl58B9_QJzEzLeh4kBBChV8VVV99VfWK4AuCsbhMGDNJa0zLbRvZ1u2TakE4K6Hs-NNqgTuGa9GI5nn1IqUHjAlvBV1Uj5-0teB_fv_xcRqc9uguGTcMOrvgUYYBTPAezCFMKAe0nFKO-kimfXR-m90IBRz3EHWeIiD4miOMkJD2FuUduIj2Eaw71kDOo-VqdbVe12tyXj3r9ZDg5e_3rLq_vrpffahv797frJa3teFNm-tuY3XDG0u0YbYDLqzQQkve2qaXPRFWa25sj3tDJGvLvD013HC52VAMHWVn1du57D6GLxOkrEaXDJQhPYQpKYY55pSQjhf09T_oQ5iiL80pKqmQRUXaFupiprZ6AOV8H4okphwLoyt6Qe_K_1I0THaMUVkS3p0kFCYXmbZ6SkndrD-fsm_-Ynegh7xLYZiOGzgF6QyaGFKK0Kuyj1HHb4pgdTCFmk2hiinU0RTq0Dqbk-blQfwz4H-yfgEkZrri</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Marshall, Andrew G.</creator><creator>Wang, Guomin</creator><creator>Hendon, Harry H.</creator><creator>Lin, Hai</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4902-1462</orcidid><orcidid>https://orcid.org/0000-0002-1158-2427</orcidid><orcidid>https://orcid.org/0000-0002-4378-2263</orcidid><orcidid>https://orcid.org/0000-0003-4353-0426</orcidid></search><sort><creationdate>20230701</creationdate><title>Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1</title><author>Marshall, Andrew G. ; Wang, Guomin ; Hendon, Harry H. ; Lin, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-9bda545d1ac3d9e47d7a7a846d5f8f17daa4cdf0fc1836089f2c4c48bb20e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air flow</topic><topic>Analysis</topic><topic>Australia</topic><topic>Baroclinic flow</topic><topic>Climate change</topic><topic>Climatology</topic><topic>cold</topic><topic>Convection</topic><topic>Convective heating</topic><topic>Dynamic meteorology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eddies</topic><topic>Environmental aspects</topic><topic>Equator</topic><topic>Geophysics/Geodesy</topic><topic>Great circles</topic><topic>Heat</topic><topic>Heating</topic><topic>Indian Ocean</topic><topic>Madden-Julian Oscillation</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Outflow</topic><topic>Phases</topic><topic>Planetary waves</topic><topic>prediction</topic><topic>Radiation</topic><topic>Radiative heating</topic><topic>Rain</topic><topic>Rossby waves</topic><topic>South America</topic><topic>Southern Hemisphere</topic><topic>spring</topic><topic>Teleconnections</topic><topic>Teleconnections (Climatology)</topic><topic>Temperature</topic><topic>Temperature extremes</topic><topic>Wave packets</topic><topic>Wave trains</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, Andrew G.</creatorcontrib><creatorcontrib>Wang, Guomin</creatorcontrib><creatorcontrib>Hendon, Harry H.</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, Andrew G.</au><au>Wang, Guomin</au><au>Hendon, Harry H.</au><au>Lin, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>61</volume><issue>1-2</issue><spage>431</spage><epage>447</epage><pages>431-447</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>We examine impacts of the Madden–Julian Oscillation (MJO) on Australian springtime temperatures and extremes, explore the mechanisms behind the teleconnections, and assess their prediction in retrospective forecasts using the Bureau of Meteorology’s ACCESS-S1 dynamical forecast system. The MJO incites strong and significant warming across southern Australia in phases 2, 3 and 4 when its active convection propagates over the Indian Ocean and Maritime Continent. The heat signal appears strongest in south-eastern Australia during MJO phases 2 and 3 in the vicinity of a deep anticyclonic anomaly which brings warmer airflow to south-western Australia while promoting shortwave radiative heating in the southeast. This occurs as part of a Rossby wave train that emanates from the Indian Ocean and disperses across the Southern Hemisphere along a great circle route towards South America, in response to MJO convective heating on the equator. Importantly, we show the wave train emerges from the divergent outflow from anomalous MJO convection, rather than from the Rossby waves that exist within the MJO's baroclinic structure. Feedbacks between transient eddies and the low frequency flow to the south of Australia and southeast of South America reinforce the wave train in phases 1–3 but act against it during its demise in phase 4. The MJO is a source of subseasonal predictability of springtime heat and cold events over southern Australia in ACCESS-S1 at lead times of 2–4 weeks, yet there remains room for improvement in the model's depiction of the MJO and its teleconnection to the Southern Hemisphere.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-022-06586-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4902-1462</orcidid><orcidid>https://orcid.org/0000-0002-1158-2427</orcidid><orcidid>https://orcid.org/0000-0002-4378-2263</orcidid><orcidid>https://orcid.org/0000-0003-4353-0426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2023-07, Vol.61 (1-2), p.431-447
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_3040421194
source SpringerLink Journals - AutoHoldings
subjects Air flow
Analysis
Australia
Baroclinic flow
Climate change
Climatology
cold
Convection
Convective heating
Dynamic meteorology
Earth and Environmental Science
Earth Sciences
Eddies
Environmental aspects
Equator
Geophysics/Geodesy
Great circles
Heat
Heating
Indian Ocean
Madden-Julian Oscillation
Meteorology
Methods
Oceanography
Oceans
Outflow
Phases
Planetary waves
prediction
Radiation
Radiative heating
Rain
Rossby waves
South America
Southern Hemisphere
spring
Teleconnections
Teleconnections (Climatology)
Temperature
Temperature extremes
Wave packets
Wave trains
Weather
Weather forecasting
title Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Madden%E2%80%93Julian%20Oscillation%20teleconnections%20to%20Australian%20springtime%20temperature%20extremes%20and%20their%20prediction%20in%20ACCESS-S1&rft.jtitle=Climate%20dynamics&rft.au=Marshall,%20Andrew%20G.&rft.date=2023-07-01&rft.volume=61&rft.issue=1-2&rft.spage=431&rft.epage=447&rft.pages=431-447&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-022-06586-6&rft_dat=%3Cgale_proqu%3EA753893328%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827809326&rft_id=info:pmid/&rft_galeid=A753893328&rfr_iscdi=true