Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe2/P(VDF-TrFE) Heterostructure

The assorted utilization of infrared detectors induces the demand for more comprehensive and high-performance electronic devices that work at room temperature. The intricacy of the fabrication process with bulk material limits the exploration in this field. However, two-dimensional (2D) materials wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-04, Vol.15 (15), p.19121-19128
Hauptverfasser: Paul Inbaraj, Christy Roshini, Mathew, Roshan Jesus, Sankar, Raman, Lin, Hsia Yu, Li, Nian-Xiu, Chen, Yit-Tsong, Chen, Yang-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19128
container_issue 15
container_start_page 19121
container_title ACS applied materials & interfaces
container_volume 15
creator Paul Inbaraj, Christy Roshini
Mathew, Roshan Jesus
Sankar, Raman
Lin, Hsia Yu
Li, Nian-Xiu
Chen, Yit-Tsong
Chen, Yang-Fang
description The assorted utilization of infrared detectors induces the demand for more comprehensive and high-performance electronic devices that work at room temperature. The intricacy of the fabrication process with bulk material limits the exploration in this field. However, two-dimensional (2D) materials with a narrow band gap opening aid in infrared (IR) detection relatively, but the photodetection range is narrowed due to the inherent band gap. In this study, we report an unprecedented attempt at the coordinated use of both 2D heterostructure (InSe/WSe2) and the dielectric polymer (poly­(vinylidene fluoride-trifluoroethylene), P­(VDF-TrFE)) for both visible and IR photodetection in a single device. The remnant polarization due to the ferroelectric effect of the polymer dielectric enhances the photocarrier separation in the visible range, resulting in high photoresponsivity. On the other hand, the pyroelectric effect of the polymer dielectric causes a change in the device current due to the increased temperature induced by the localized heating effect of the IR irradiation, which results in the change of ferroelectric polarization and induces the redistribution of charge carriers. In turn, it changes the built-in electric field, the depletion width, and the band alignment across the p–n heterojunction interface. Consequently, the charge carrier separation and the photosensitivity are therefore enhanced. Through the coupling between pyroelectricity and built-in electric field across the heterojunction, the specific detectivity for the photon energy below the band gap of the constituent 2D materials can reach up to 1011 Jones, which is better than all reported pyroelectric IR detectors. The proposed approach combining the ferroelectric and pyroelectric effects of the dielectric as well as exceptional properties of the 2D heterostructures can spark the design of advanced and not-yet realized optoelectronic devices.
doi_str_mv 10.1021/acsami.2c22876
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040398316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040398316</sourcerecordid><originalsourceid>FETCH-LOGICAL-a256t-d6c5b157cb506942e76f8f47fd317b20529299b5035d16db02d3e23a8711c6483</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsFavnnOswtp87GZ3j1pbWxAs1I_jks3OakqaaJJV-mP8r0ZavHqaYZ6XF4YnSc4JviKYkrGQXmzUFZWUlgU_SAakyrK0pDk9_Nuz7Dg58X6NMWcU54Pke2L7d63MK2ogfAEYtNw6CxpkcEqqsEXCtOimVzqkC4Ome4BmCnSLpkY0Glo0V69veotWYLwK6hPQwnROuEiWbzbY4EQEPliHboSPV2tiYgXjlxXQ8XL0fDtLH91seoHmEMBZH1wvQ-_gNDnqhPZwtp_D5Gk2fZzM0_uHu8Xk-j4VNOchbbnMG5IXsskxrzIKBe_KLiu6lpGiiX_SilZVhCxvCW8bTFsGlImyIETyrGTDZLTrfXf2owcf6o3yErQWBmzva4YzzKqSEf5vlBZVrMUlyWP0cheNZuq17Z2JP9QE17-66p2ueq-L_QCV4onU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798710815</pqid></control><display><type>article</type><title>Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe2/P(VDF-TrFE) Heterostructure</title><source>ACS Publications</source><creator>Paul Inbaraj, Christy Roshini ; Mathew, Roshan Jesus ; Sankar, Raman ; Lin, Hsia Yu ; Li, Nian-Xiu ; Chen, Yit-Tsong ; Chen, Yang-Fang</creator><creatorcontrib>Paul Inbaraj, Christy Roshini ; Mathew, Roshan Jesus ; Sankar, Raman ; Lin, Hsia Yu ; Li, Nian-Xiu ; Chen, Yit-Tsong ; Chen, Yang-Fang</creatorcontrib><description>The assorted utilization of infrared detectors induces the demand for more comprehensive and high-performance electronic devices that work at room temperature. The intricacy of the fabrication process with bulk material limits the exploration in this field. However, two-dimensional (2D) materials with a narrow band gap opening aid in infrared (IR) detection relatively, but the photodetection range is narrowed due to the inherent band gap. In this study, we report an unprecedented attempt at the coordinated use of both 2D heterostructure (InSe/WSe2) and the dielectric polymer (poly­(vinylidene fluoride-trifluoroethylene), P­(VDF-TrFE)) for both visible and IR photodetection in a single device. The remnant polarization due to the ferroelectric effect of the polymer dielectric enhances the photocarrier separation in the visible range, resulting in high photoresponsivity. On the other hand, the pyroelectric effect of the polymer dielectric causes a change in the device current due to the increased temperature induced by the localized heating effect of the IR irradiation, which results in the change of ferroelectric polarization and induces the redistribution of charge carriers. In turn, it changes the built-in electric field, the depletion width, and the band alignment across the p–n heterojunction interface. Consequently, the charge carrier separation and the photosensitivity are therefore enhanced. Through the coupling between pyroelectricity and built-in electric field across the heterojunction, the specific detectivity for the photon energy below the band gap of the constituent 2D materials can reach up to 1011 Jones, which is better than all reported pyroelectric IR detectors. The proposed approach combining the ferroelectric and pyroelectric effects of the dielectric as well as exceptional properties of the 2D heterostructures can spark the design of advanced and not-yet realized optoelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c22876</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>ambient temperature ; electric field ; energy ; Functional Inorganic Materials and Devices ; irradiation ; photons ; photosensitivity ; polymers</subject><ispartof>ACS applied materials &amp; interfaces, 2023-04, Vol.15 (15), p.19121-19128</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1203-5115 ; 0000-0002-0913-6321 ; 0000-0002-6204-8320 ; 0000-0002-8776-9917 ; 0000-0003-4702-2517 ; 0000-0002-0886-3367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c22876$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c22876$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Paul Inbaraj, Christy Roshini</creatorcontrib><creatorcontrib>Mathew, Roshan Jesus</creatorcontrib><creatorcontrib>Sankar, Raman</creatorcontrib><creatorcontrib>Lin, Hsia Yu</creatorcontrib><creatorcontrib>Li, Nian-Xiu</creatorcontrib><creatorcontrib>Chen, Yit-Tsong</creatorcontrib><creatorcontrib>Chen, Yang-Fang</creatorcontrib><title>Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe2/P(VDF-TrFE) Heterostructure</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The assorted utilization of infrared detectors induces the demand for more comprehensive and high-performance electronic devices that work at room temperature. The intricacy of the fabrication process with bulk material limits the exploration in this field. However, two-dimensional (2D) materials with a narrow band gap opening aid in infrared (IR) detection relatively, but the photodetection range is narrowed due to the inherent band gap. In this study, we report an unprecedented attempt at the coordinated use of both 2D heterostructure (InSe/WSe2) and the dielectric polymer (poly­(vinylidene fluoride-trifluoroethylene), P­(VDF-TrFE)) for both visible and IR photodetection in a single device. The remnant polarization due to the ferroelectric effect of the polymer dielectric enhances the photocarrier separation in the visible range, resulting in high photoresponsivity. On the other hand, the pyroelectric effect of the polymer dielectric causes a change in the device current due to the increased temperature induced by the localized heating effect of the IR irradiation, which results in the change of ferroelectric polarization and induces the redistribution of charge carriers. In turn, it changes the built-in electric field, the depletion width, and the band alignment across the p–n heterojunction interface. Consequently, the charge carrier separation and the photosensitivity are therefore enhanced. Through the coupling between pyroelectricity and built-in electric field across the heterojunction, the specific detectivity for the photon energy below the band gap of the constituent 2D materials can reach up to 1011 Jones, which is better than all reported pyroelectric IR detectors. The proposed approach combining the ferroelectric and pyroelectric effects of the dielectric as well as exceptional properties of the 2D heterostructures can spark the design of advanced and not-yet realized optoelectronic devices.</description><subject>ambient temperature</subject><subject>electric field</subject><subject>energy</subject><subject>Functional Inorganic Materials and Devices</subject><subject>irradiation</subject><subject>photons</subject><subject>photosensitivity</subject><subject>polymers</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhhdRsFavnnOswtp87GZ3j1pbWxAs1I_jks3OakqaaJJV-mP8r0ZavHqaYZ6XF4YnSc4JviKYkrGQXmzUFZWUlgU_SAakyrK0pDk9_Nuz7Dg58X6NMWcU54Pke2L7d63MK2ogfAEYtNw6CxpkcEqqsEXCtOimVzqkC4Ome4BmCnSLpkY0Glo0V69veotWYLwK6hPQwnROuEiWbzbY4EQEPliHboSPV2tiYgXjlxXQ8XL0fDtLH91seoHmEMBZH1wvQ-_gNDnqhPZwtp_D5Gk2fZzM0_uHu8Xk-j4VNOchbbnMG5IXsskxrzIKBe_KLiu6lpGiiX_SilZVhCxvCW8bTFsGlImyIETyrGTDZLTrfXf2owcf6o3yErQWBmzva4YzzKqSEf5vlBZVrMUlyWP0cheNZuq17Z2JP9QE17-66p2ueq-L_QCV4onU</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Paul Inbaraj, Christy Roshini</creator><creator>Mathew, Roshan Jesus</creator><creator>Sankar, Raman</creator><creator>Lin, Hsia Yu</creator><creator>Li, Nian-Xiu</creator><creator>Chen, Yit-Tsong</creator><creator>Chen, Yang-Fang</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1203-5115</orcidid><orcidid>https://orcid.org/0000-0002-0913-6321</orcidid><orcidid>https://orcid.org/0000-0002-6204-8320</orcidid><orcidid>https://orcid.org/0000-0002-8776-9917</orcidid><orcidid>https://orcid.org/0000-0003-4702-2517</orcidid><orcidid>https://orcid.org/0000-0002-0886-3367</orcidid></search><sort><creationdate>20230419</creationdate><title>Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe2/P(VDF-TrFE) Heterostructure</title><author>Paul Inbaraj, Christy Roshini ; Mathew, Roshan Jesus ; Sankar, Raman ; Lin, Hsia Yu ; Li, Nian-Xiu ; Chen, Yit-Tsong ; Chen, Yang-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a256t-d6c5b157cb506942e76f8f47fd317b20529299b5035d16db02d3e23a8711c6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ambient temperature</topic><topic>electric field</topic><topic>energy</topic><topic>Functional Inorganic Materials and Devices</topic><topic>irradiation</topic><topic>photons</topic><topic>photosensitivity</topic><topic>polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul Inbaraj, Christy Roshini</creatorcontrib><creatorcontrib>Mathew, Roshan Jesus</creatorcontrib><creatorcontrib>Sankar, Raman</creatorcontrib><creatorcontrib>Lin, Hsia Yu</creatorcontrib><creatorcontrib>Li, Nian-Xiu</creatorcontrib><creatorcontrib>Chen, Yit-Tsong</creatorcontrib><creatorcontrib>Chen, Yang-Fang</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul Inbaraj, Christy Roshini</au><au>Mathew, Roshan Jesus</au><au>Sankar, Raman</au><au>Lin, Hsia Yu</au><au>Li, Nian-Xiu</au><au>Chen, Yit-Tsong</au><au>Chen, Yang-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe2/P(VDF-TrFE) Heterostructure</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-04-19</date><risdate>2023</risdate><volume>15</volume><issue>15</issue><spage>19121</spage><epage>19128</epage><pages>19121-19128</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The assorted utilization of infrared detectors induces the demand for more comprehensive and high-performance electronic devices that work at room temperature. The intricacy of the fabrication process with bulk material limits the exploration in this field. However, two-dimensional (2D) materials with a narrow band gap opening aid in infrared (IR) detection relatively, but the photodetection range is narrowed due to the inherent band gap. In this study, we report an unprecedented attempt at the coordinated use of both 2D heterostructure (InSe/WSe2) and the dielectric polymer (poly­(vinylidene fluoride-trifluoroethylene), P­(VDF-TrFE)) for both visible and IR photodetection in a single device. The remnant polarization due to the ferroelectric effect of the polymer dielectric enhances the photocarrier separation in the visible range, resulting in high photoresponsivity. On the other hand, the pyroelectric effect of the polymer dielectric causes a change in the device current due to the increased temperature induced by the localized heating effect of the IR irradiation, which results in the change of ferroelectric polarization and induces the redistribution of charge carriers. In turn, it changes the built-in electric field, the depletion width, and the band alignment across the p–n heterojunction interface. Consequently, the charge carrier separation and the photosensitivity are therefore enhanced. Through the coupling between pyroelectricity and built-in electric field across the heterojunction, the specific detectivity for the photon energy below the band gap of the constituent 2D materials can reach up to 1011 Jones, which is better than all reported pyroelectric IR detectors. The proposed approach combining the ferroelectric and pyroelectric effects of the dielectric as well as exceptional properties of the 2D heterostructures can spark the design of advanced and not-yet realized optoelectronic devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c22876</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1203-5115</orcidid><orcidid>https://orcid.org/0000-0002-0913-6321</orcidid><orcidid>https://orcid.org/0000-0002-6204-8320</orcidid><orcidid>https://orcid.org/0000-0002-8776-9917</orcidid><orcidid>https://orcid.org/0000-0003-4702-2517</orcidid><orcidid>https://orcid.org/0000-0002-0886-3367</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-04, Vol.15 (15), p.19121-19128
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3040398316
source ACS Publications
subjects ambient temperature
electric field
energy
Functional Inorganic Materials and Devices
irradiation
photons
photosensitivity
polymers
title Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe2/P(VDF-TrFE) Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20between%20Pyroelectricity%20and%20Built-In%20Electric%20Field%20Enabled%20Highly%20Sensitive%20Infrared%20Phototransistor%20Based%20on%20InSe/WSe2/P(VDF-TrFE)%20Heterostructure&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Paul%20Inbaraj,%20Christy%20Roshini&rft.date=2023-04-19&rft.volume=15&rft.issue=15&rft.spage=19121&rft.epage=19128&rft.pages=19121-19128&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c22876&rft_dat=%3Cproquest_acs_j%3E3040398316%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798710815&rft_id=info:pmid/&rfr_iscdi=true