Comparative metabolomics analysis reveals secondary cell wall thickening as a barrier to resist Aspergillus flavus infection in groundnut

Aflatoxin contamination caused by Aspergillus flavus significantly threatens food safety and human health. Resistance to aflatoxin is a highly complex and quantitative trait, but the underlying molecular and biochemical mechanisms are poorly understood. The present study aims to identify the resista...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2024-01, Vol.176 (1), p.n/a
Hauptverfasser: Avuthu, Tejaswi, Sanivarapu, Hemalatha, Prasad, Kalyani, Sharma, Niharika, Sudini, Hari Kishan, Yogendra, Kalenahalli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Physiologia plantarum
container_volume 176
creator Avuthu, Tejaswi
Sanivarapu, Hemalatha
Prasad, Kalyani
Sharma, Niharika
Sudini, Hari Kishan
Yogendra, Kalenahalli
description Aflatoxin contamination caused by Aspergillus flavus significantly threatens food safety and human health. Resistance to aflatoxin is a highly complex and quantitative trait, but the underlying molecular and biochemical mechanisms are poorly understood. The present study aims to identify the resistance‐related metabolites in groundnut that influence the defense mechanism against aflatoxin. Here, metabolite profiling of resistant (55–437) and susceptible (TMV‐2) groundnut genotypes, which exhibited contrasting levels of resistance to A. flavus growth and aflatoxin accumulation under pathogen‐ or mock‐inoculated treatments, was undertaken using liquid chromatography and high‐resolution mass spectrometry (LC‐HRMS). Non‐targeted metabolomic analysis revealed key resistance‐related metabolites belonging to phenylpropanoids, flavonoids, fatty acids, alkaloids, and terpenoid biosynthetic pathways. The phenylpropanoids ‐ hydroxycinnamic acid amides (HCAAs) and lignins were among the most abundantly accumulated metabolites in the resistant genotype compared to the susceptible genotype. HCAAs and lignins are deposited as polymers and conjugated metabolites to strengthen the secondary cell wall, which acts as a barrier to pathogen entry. Further, histochemical staining confirmed the secondary cell wall thickening due to HCAAs and lignin depositions. Quantitative real‐time PCR studies revealed higher expressions of phenylalanine ammonia‐lyase (PAL), 4‐coumarate: CoA ligase (4CL), cinnamoyl CoA reductase (CCR2), cinnamoyl alcohol dehydrogenase (CAD1), agmatine hydroxycinnamoyl transferase (ACT), chalcone synthase (CHS), dihydroflavonol 4‐reductase (DFR) and flavonol synthase (FLS) in the pathogen‐inoculated resistant genotype than in the susceptible genotype. This study reveals that the resistance to aflatoxin contamination in groundnut genotypes is associated with secondary cell wall thickening due to the deposition of HCAAs and lignins.
doi_str_mv 10.1111/ppl.14169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040388957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040388957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3259-f163c4d20fb53210a2a5403b38928fbd7204d7e1e6135394c4bf420fdccb0ddf3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EEuWx4A8ssYFFWjtO0maJKl5SJVjA2nKccTE4drCTon4Cf81AWSExixkvzp2R7yXkjLMpx5r1vZvyglf1HplwUdeZYGWxTyaMCZ7Vgs8PyVFKr4zxquL5hHwuQ9erqAa7AdrBoJrgQmd1osort0020QgbUC7RBDr4VsUt1eAc_VDYhher38Bbv6YKJbRRMVqIdAgoQ_FAr1IPcW2dGxM1Tm1wWG9ADzZ4fNF1DKNv_TickAODZ-D0dx6T55vrp-Vdtnq4vV9erTIt8rLODK-ELtqcmaYUOWcqV2XBRCMWdb4wTTvPWdHOgUPFRSnqQheNKZButW5Y2xpxTC52e_sY3kdIg-xs-v6R8hDGJAXDdYtFXc4RPf-DvoYxoi9J5uglnkRDkbrcUTqGlCIY2UfboU-SM_kdisRQ5E8oyM527Id1sP0flI-Pq53iC528kPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931389317</pqid></control><display><type>article</type><title>Comparative metabolomics analysis reveals secondary cell wall thickening as a barrier to resist Aspergillus flavus infection in groundnut</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Avuthu, Tejaswi ; Sanivarapu, Hemalatha ; Prasad, Kalyani ; Sharma, Niharika ; Sudini, Hari Kishan ; Yogendra, Kalenahalli</creator><creatorcontrib>Avuthu, Tejaswi ; Sanivarapu, Hemalatha ; Prasad, Kalyani ; Sharma, Niharika ; Sudini, Hari Kishan ; Yogendra, Kalenahalli</creatorcontrib><description>Aflatoxin contamination caused by Aspergillus flavus significantly threatens food safety and human health. Resistance to aflatoxin is a highly complex and quantitative trait, but the underlying molecular and biochemical mechanisms are poorly understood. The present study aims to identify the resistance‐related metabolites in groundnut that influence the defense mechanism against aflatoxin. Here, metabolite profiling of resistant (55–437) and susceptible (TMV‐2) groundnut genotypes, which exhibited contrasting levels of resistance to A. flavus growth and aflatoxin accumulation under pathogen‐ or mock‐inoculated treatments, was undertaken using liquid chromatography and high‐resolution mass spectrometry (LC‐HRMS). Non‐targeted metabolomic analysis revealed key resistance‐related metabolites belonging to phenylpropanoids, flavonoids, fatty acids, alkaloids, and terpenoid biosynthetic pathways. The phenylpropanoids ‐ hydroxycinnamic acid amides (HCAAs) and lignins were among the most abundantly accumulated metabolites in the resistant genotype compared to the susceptible genotype. HCAAs and lignins are deposited as polymers and conjugated metabolites to strengthen the secondary cell wall, which acts as a barrier to pathogen entry. Further, histochemical staining confirmed the secondary cell wall thickening due to HCAAs and lignin depositions. Quantitative real‐time PCR studies revealed higher expressions of phenylalanine ammonia‐lyase (PAL), 4‐coumarate: CoA ligase (4CL), cinnamoyl CoA reductase (CCR2), cinnamoyl alcohol dehydrogenase (CAD1), agmatine hydroxycinnamoyl transferase (ACT), chalcone synthase (CHS), dihydroflavonol 4‐reductase (DFR) and flavonol synthase (FLS) in the pathogen‐inoculated resistant genotype than in the susceptible genotype. This study reveals that the resistance to aflatoxin contamination in groundnut genotypes is associated with secondary cell wall thickening due to the deposition of HCAAs and lignins.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.14169</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aflatoxins ; Agmatine ; Alcohol dehydrogenase ; Amides ; Ammonia ; Aspergillus flavus ; biosynthesis ; Cell walls ; Chalcone synthase ; Contamination ; coumaric acids ; Flavonoids ; Flavonols ; Food contamination ; Food safety ; genotype ; Genotype &amp; phenotype ; Genotypes ; Groundnuts ; human health ; Hydroxycinnamic acid ; hydroxycinnamoyltransferase ; ligases ; Lignin ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolomics ; naringenin-chalcone synthase ; Pathogens ; peanuts ; Phenylalanine ; phenylalanine ammonia-lyase ; Phenylpropanoids ; Polymers ; quantitative polymerase chain reaction ; quantitative traits ; Reductases ; terpenoids ; Thickening</subject><ispartof>Physiologia plantarum, 2024-01, Vol.176 (1), p.n/a</ispartof><rights>2024 Scandinavian Plant Physiology Society.</rights><rights>2024 Scandinavian Plant Physiology Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3259-f163c4d20fb53210a2a5403b38928fbd7204d7e1e6135394c4bf420fdccb0ddf3</cites><orcidid>0000-0003-3546-7367 ; 0000-0002-2110-1308 ; 0000-0002-9032-5102 ; 0000-0001-6707-4467 ; 0000-0001-7200-6215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.14169$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.14169$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Avuthu, Tejaswi</creatorcontrib><creatorcontrib>Sanivarapu, Hemalatha</creatorcontrib><creatorcontrib>Prasad, Kalyani</creatorcontrib><creatorcontrib>Sharma, Niharika</creatorcontrib><creatorcontrib>Sudini, Hari Kishan</creatorcontrib><creatorcontrib>Yogendra, Kalenahalli</creatorcontrib><title>Comparative metabolomics analysis reveals secondary cell wall thickening as a barrier to resist Aspergillus flavus infection in groundnut</title><title>Physiologia plantarum</title><description>Aflatoxin contamination caused by Aspergillus flavus significantly threatens food safety and human health. Resistance to aflatoxin is a highly complex and quantitative trait, but the underlying molecular and biochemical mechanisms are poorly understood. The present study aims to identify the resistance‐related metabolites in groundnut that influence the defense mechanism against aflatoxin. Here, metabolite profiling of resistant (55–437) and susceptible (TMV‐2) groundnut genotypes, which exhibited contrasting levels of resistance to A. flavus growth and aflatoxin accumulation under pathogen‐ or mock‐inoculated treatments, was undertaken using liquid chromatography and high‐resolution mass spectrometry (LC‐HRMS). Non‐targeted metabolomic analysis revealed key resistance‐related metabolites belonging to phenylpropanoids, flavonoids, fatty acids, alkaloids, and terpenoid biosynthetic pathways. The phenylpropanoids ‐ hydroxycinnamic acid amides (HCAAs) and lignins were among the most abundantly accumulated metabolites in the resistant genotype compared to the susceptible genotype. HCAAs and lignins are deposited as polymers and conjugated metabolites to strengthen the secondary cell wall, which acts as a barrier to pathogen entry. Further, histochemical staining confirmed the secondary cell wall thickening due to HCAAs and lignin depositions. Quantitative real‐time PCR studies revealed higher expressions of phenylalanine ammonia‐lyase (PAL), 4‐coumarate: CoA ligase (4CL), cinnamoyl CoA reductase (CCR2), cinnamoyl alcohol dehydrogenase (CAD1), agmatine hydroxycinnamoyl transferase (ACT), chalcone synthase (CHS), dihydroflavonol 4‐reductase (DFR) and flavonol synthase (FLS) in the pathogen‐inoculated resistant genotype than in the susceptible genotype. This study reveals that the resistance to aflatoxin contamination in groundnut genotypes is associated with secondary cell wall thickening due to the deposition of HCAAs and lignins.</description><subject>Aflatoxins</subject><subject>Agmatine</subject><subject>Alcohol dehydrogenase</subject><subject>Amides</subject><subject>Ammonia</subject><subject>Aspergillus flavus</subject><subject>biosynthesis</subject><subject>Cell walls</subject><subject>Chalcone synthase</subject><subject>Contamination</subject><subject>coumaric acids</subject><subject>Flavonoids</subject><subject>Flavonols</subject><subject>Food contamination</subject><subject>Food safety</subject><subject>genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Groundnuts</subject><subject>human health</subject><subject>Hydroxycinnamic acid</subject><subject>hydroxycinnamoyltransferase</subject><subject>ligases</subject><subject>Lignin</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>naringenin-chalcone synthase</subject><subject>Pathogens</subject><subject>peanuts</subject><subject>Phenylalanine</subject><subject>phenylalanine ammonia-lyase</subject><subject>Phenylpropanoids</subject><subject>Polymers</subject><subject>quantitative polymerase chain reaction</subject><subject>quantitative traits</subject><subject>Reductases</subject><subject>terpenoids</subject><subject>Thickening</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRS0EEuWx4A8ssYFFWjtO0maJKl5SJVjA2nKccTE4drCTon4Cf81AWSExixkvzp2R7yXkjLMpx5r1vZvyglf1HplwUdeZYGWxTyaMCZ7Vgs8PyVFKr4zxquL5hHwuQ9erqAa7AdrBoJrgQmd1osort0020QgbUC7RBDr4VsUt1eAc_VDYhher38Bbv6YKJbRRMVqIdAgoQ_FAr1IPcW2dGxM1Tm1wWG9ADzZ4fNF1DKNv_TickAODZ-D0dx6T55vrp-Vdtnq4vV9erTIt8rLODK-ELtqcmaYUOWcqV2XBRCMWdb4wTTvPWdHOgUPFRSnqQheNKZButW5Y2xpxTC52e_sY3kdIg-xs-v6R8hDGJAXDdYtFXc4RPf-DvoYxoi9J5uglnkRDkbrcUTqGlCIY2UfboU-SM_kdisRQ5E8oyM527Id1sP0flI-Pq53iC528kPQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Avuthu, Tejaswi</creator><creator>Sanivarapu, Hemalatha</creator><creator>Prasad, Kalyani</creator><creator>Sharma, Niharika</creator><creator>Sudini, Hari Kishan</creator><creator>Yogendra, Kalenahalli</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3546-7367</orcidid><orcidid>https://orcid.org/0000-0002-2110-1308</orcidid><orcidid>https://orcid.org/0000-0002-9032-5102</orcidid><orcidid>https://orcid.org/0000-0001-6707-4467</orcidid><orcidid>https://orcid.org/0000-0001-7200-6215</orcidid></search><sort><creationdate>202401</creationdate><title>Comparative metabolomics analysis reveals secondary cell wall thickening as a barrier to resist Aspergillus flavus infection in groundnut</title><author>Avuthu, Tejaswi ; Sanivarapu, Hemalatha ; Prasad, Kalyani ; Sharma, Niharika ; Sudini, Hari Kishan ; Yogendra, Kalenahalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3259-f163c4d20fb53210a2a5403b38928fbd7204d7e1e6135394c4bf420fdccb0ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aflatoxins</topic><topic>Agmatine</topic><topic>Alcohol dehydrogenase</topic><topic>Amides</topic><topic>Ammonia</topic><topic>Aspergillus flavus</topic><topic>biosynthesis</topic><topic>Cell walls</topic><topic>Chalcone synthase</topic><topic>Contamination</topic><topic>coumaric acids</topic><topic>Flavonoids</topic><topic>Flavonols</topic><topic>Food contamination</topic><topic>Food safety</topic><topic>genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Groundnuts</topic><topic>human health</topic><topic>Hydroxycinnamic acid</topic><topic>hydroxycinnamoyltransferase</topic><topic>ligases</topic><topic>Lignin</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>naringenin-chalcone synthase</topic><topic>Pathogens</topic><topic>peanuts</topic><topic>Phenylalanine</topic><topic>phenylalanine ammonia-lyase</topic><topic>Phenylpropanoids</topic><topic>Polymers</topic><topic>quantitative polymerase chain reaction</topic><topic>quantitative traits</topic><topic>Reductases</topic><topic>terpenoids</topic><topic>Thickening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avuthu, Tejaswi</creatorcontrib><creatorcontrib>Sanivarapu, Hemalatha</creatorcontrib><creatorcontrib>Prasad, Kalyani</creatorcontrib><creatorcontrib>Sharma, Niharika</creatorcontrib><creatorcontrib>Sudini, Hari Kishan</creatorcontrib><creatorcontrib>Yogendra, Kalenahalli</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avuthu, Tejaswi</au><au>Sanivarapu, Hemalatha</au><au>Prasad, Kalyani</au><au>Sharma, Niharika</au><au>Sudini, Hari Kishan</au><au>Yogendra, Kalenahalli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative metabolomics analysis reveals secondary cell wall thickening as a barrier to resist Aspergillus flavus infection in groundnut</atitle><jtitle>Physiologia plantarum</jtitle><date>2024-01</date><risdate>2024</risdate><volume>176</volume><issue>1</issue><epage>n/a</epage><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Aflatoxin contamination caused by Aspergillus flavus significantly threatens food safety and human health. Resistance to aflatoxin is a highly complex and quantitative trait, but the underlying molecular and biochemical mechanisms are poorly understood. The present study aims to identify the resistance‐related metabolites in groundnut that influence the defense mechanism against aflatoxin. Here, metabolite profiling of resistant (55–437) and susceptible (TMV‐2) groundnut genotypes, which exhibited contrasting levels of resistance to A. flavus growth and aflatoxin accumulation under pathogen‐ or mock‐inoculated treatments, was undertaken using liquid chromatography and high‐resolution mass spectrometry (LC‐HRMS). Non‐targeted metabolomic analysis revealed key resistance‐related metabolites belonging to phenylpropanoids, flavonoids, fatty acids, alkaloids, and terpenoid biosynthetic pathways. The phenylpropanoids ‐ hydroxycinnamic acid amides (HCAAs) and lignins were among the most abundantly accumulated metabolites in the resistant genotype compared to the susceptible genotype. HCAAs and lignins are deposited as polymers and conjugated metabolites to strengthen the secondary cell wall, which acts as a barrier to pathogen entry. Further, histochemical staining confirmed the secondary cell wall thickening due to HCAAs and lignin depositions. Quantitative real‐time PCR studies revealed higher expressions of phenylalanine ammonia‐lyase (PAL), 4‐coumarate: CoA ligase (4CL), cinnamoyl CoA reductase (CCR2), cinnamoyl alcohol dehydrogenase (CAD1), agmatine hydroxycinnamoyl transferase (ACT), chalcone synthase (CHS), dihydroflavonol 4‐reductase (DFR) and flavonol synthase (FLS) in the pathogen‐inoculated resistant genotype than in the susceptible genotype. This study reveals that the resistance to aflatoxin contamination in groundnut genotypes is associated with secondary cell wall thickening due to the deposition of HCAAs and lignins.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ppl.14169</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3546-7367</orcidid><orcidid>https://orcid.org/0000-0002-2110-1308</orcidid><orcidid>https://orcid.org/0000-0002-9032-5102</orcidid><orcidid>https://orcid.org/0000-0001-6707-4467</orcidid><orcidid>https://orcid.org/0000-0001-7200-6215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2024-01, Vol.176 (1), p.n/a
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_3040388957
source Wiley Online Library Journals Frontfile Complete
subjects Aflatoxins
Agmatine
Alcohol dehydrogenase
Amides
Ammonia
Aspergillus flavus
biosynthesis
Cell walls
Chalcone synthase
Contamination
coumaric acids
Flavonoids
Flavonols
Food contamination
Food safety
genotype
Genotype & phenotype
Genotypes
Groundnuts
human health
Hydroxycinnamic acid
hydroxycinnamoyltransferase
ligases
Lignin
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Metabolites
Metabolomics
naringenin-chalcone synthase
Pathogens
peanuts
Phenylalanine
phenylalanine ammonia-lyase
Phenylpropanoids
Polymers
quantitative polymerase chain reaction
quantitative traits
Reductases
terpenoids
Thickening
title Comparative metabolomics analysis reveals secondary cell wall thickening as a barrier to resist Aspergillus flavus infection in groundnut
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20metabolomics%20analysis%20reveals%20secondary%20cell%20wall%20thickening%20as%20a%20barrier%20to%20resist%20Aspergillus%20flavus%20infection%20in%20groundnut&rft.jtitle=Physiologia%20plantarum&rft.au=Avuthu,%20Tejaswi&rft.date=2024-01&rft.volume=176&rft.issue=1&rft.epage=n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.14169&rft_dat=%3Cproquest_cross%3E3040388957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931389317&rft_id=info:pmid/&rfr_iscdi=true