Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm
This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivi...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-10, Vol.473, p.145301, Article 145301 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 145301 |
container_title | Chemical engineering journal (Lausanne, Switzerland : 1996) |
container_volume | 473 |
creator | Lee, Jaeheon Bae, Jaekyung Koo, Junemo Jeong, Keunhong Lee, Sang Myeon Jung, Heesoo Kim, Min-Kun |
description | This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions.
[Display omitted]
•Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth. |
doi_str_mv | 10.1016/j.cej.2023.145301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040372671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894723040329</els_id><sourcerecordid>3040372671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AHdZumnNo48UVzL4ggE3zjqk6U2b2mnGJB2Yf2-GunZ1L5zvHDgnSe4Jzggm5eOQKRgyiinLSF4wTC6SFeEVSxkl9DL-jBcpr_PqOrnxfsAYlzWpV4ndTS04H-TUmqlDoQekZJDjKRiFVA974607BGMnZPUin-RkO5iiOlpnWkBHI1HjQH6H3tm565Ga3RFQjESRg3OSHLvIhn5_m1xpOXq4-7vrZPf68rV5T7efbx-b522qGMMhpYwqCq3msiRVWfCC5VWuVaUbTktNocFcVqSs6wKkbKEoWqWpVlzzJq-hLtg6eVhyD87-zOCDiE0UjKOcwM5eMJxjVtGyIhElC6qc9d6BFgdn9tKdBMHiPK4YRBxXnMcVy7jR87R4IHY4GnDCKwOTgtY4UEG01vzj_gX2UoSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040372671</pqid></control><display><type>article</type><title>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Jaeheon ; Bae, Jaekyung ; Koo, Junemo ; Jeong, Keunhong ; Lee, Sang Myeon ; Jung, Heesoo ; Kim, Min-Kun</creator><creatorcontrib>Lee, Jaeheon ; Bae, Jaekyung ; Koo, Junemo ; Jeong, Keunhong ; Lee, Sang Myeon ; Jung, Heesoo ; Kim, Min-Kun</creatorcontrib><description>This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions.
[Display omitted]
•Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2023.145301</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>activated carbon ; algorithms ; Breakthrough curve ; catalysts ; catalytic activity ; Chemisorption ; chlorides ; cyanogen ; Cyanogen chloride ; diffusivity ; equations ; Genetic algorithm ; hydrolysis ; Machine learning</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-10, Vol.473, p.145301, Article 145301</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</citedby><cites>FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</cites><orcidid>0000-0002-0675-6103 ; 0000-0003-2061-0853 ; 0000-0002-9285-0728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2023.145301$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Lee, Jaeheon</creatorcontrib><creatorcontrib>Bae, Jaekyung</creatorcontrib><creatorcontrib>Koo, Junemo</creatorcontrib><creatorcontrib>Jeong, Keunhong</creatorcontrib><creatorcontrib>Lee, Sang Myeon</creatorcontrib><creatorcontrib>Jung, Heesoo</creatorcontrib><creatorcontrib>Kim, Min-Kun</creatorcontrib><title>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions.
[Display omitted]
•Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.</description><subject>activated carbon</subject><subject>algorithms</subject><subject>Breakthrough curve</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>Chemisorption</subject><subject>chlorides</subject><subject>cyanogen</subject><subject>Cyanogen chloride</subject><subject>diffusivity</subject><subject>equations</subject><subject>Genetic algorithm</subject><subject>hydrolysis</subject><subject>Machine learning</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOI7-AHdZumnNo48UVzL4ggE3zjqk6U2b2mnGJB2Yf2-GunZ1L5zvHDgnSe4Jzggm5eOQKRgyiinLSF4wTC6SFeEVSxkl9DL-jBcpr_PqOrnxfsAYlzWpV4ndTS04H-TUmqlDoQekZJDjKRiFVA974607BGMnZPUin-RkO5iiOlpnWkBHI1HjQH6H3tm565Ga3RFQjESRg3OSHLvIhn5_m1xpOXq4-7vrZPf68rV5T7efbx-b522qGMMhpYwqCq3msiRVWfCC5VWuVaUbTktNocFcVqSs6wKkbKEoWqWpVlzzJq-hLtg6eVhyD87-zOCDiE0UjKOcwM5eMJxjVtGyIhElC6qc9d6BFgdn9tKdBMHiPK4YRBxXnMcVy7jR87R4IHY4GnDCKwOTgtY4UEG01vzj_gX2UoSC</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lee, Jaeheon</creator><creator>Bae, Jaekyung</creator><creator>Koo, Junemo</creator><creator>Jeong, Keunhong</creator><creator>Lee, Sang Myeon</creator><creator>Jung, Heesoo</creator><creator>Kim, Min-Kun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0675-6103</orcidid><orcidid>https://orcid.org/0000-0003-2061-0853</orcidid><orcidid>https://orcid.org/0000-0002-9285-0728</orcidid></search><sort><creationdate>20231001</creationdate><title>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</title><author>Lee, Jaeheon ; Bae, Jaekyung ; Koo, Junemo ; Jeong, Keunhong ; Lee, Sang Myeon ; Jung, Heesoo ; Kim, Min-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>activated carbon</topic><topic>algorithms</topic><topic>Breakthrough curve</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>Chemisorption</topic><topic>chlorides</topic><topic>cyanogen</topic><topic>Cyanogen chloride</topic><topic>diffusivity</topic><topic>equations</topic><topic>Genetic algorithm</topic><topic>hydrolysis</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaeheon</creatorcontrib><creatorcontrib>Bae, Jaekyung</creatorcontrib><creatorcontrib>Koo, Junemo</creatorcontrib><creatorcontrib>Jeong, Keunhong</creatorcontrib><creatorcontrib>Lee, Sang Myeon</creatorcontrib><creatorcontrib>Jung, Heesoo</creatorcontrib><creatorcontrib>Kim, Min-Kun</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaeheon</au><au>Bae, Jaekyung</au><au>Koo, Junemo</au><au>Jeong, Keunhong</au><au>Lee, Sang Myeon</au><au>Jung, Heesoo</au><au>Kim, Min-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>473</volume><spage>145301</spage><pages>145301-</pages><artnum>145301</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions.
[Display omitted]
•Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2023.145301</doi><orcidid>https://orcid.org/0000-0002-0675-6103</orcidid><orcidid>https://orcid.org/0000-0003-2061-0853</orcidid><orcidid>https://orcid.org/0000-0002-9285-0728</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-8947 |
ispartof | Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-10, Vol.473, p.145301, Article 145301 |
issn | 1385-8947 1873-3212 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040372671 |
source | Elsevier ScienceDirect Journals Complete |
subjects | activated carbon algorithms Breakthrough curve catalysts catalytic activity Chemisorption chlorides cyanogen Cyanogen chloride diffusivity equations Genetic algorithm hydrolysis Machine learning |
title | Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20catalytic%20chemisorption%20of%20the%20cyanogen%20chloride%20via%20breakthrough%20curve%20and%20genetic%20algorithm&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Lee,%20Jaeheon&rft.date=2023-10-01&rft.volume=473&rft.spage=145301&rft.pages=145301-&rft.artnum=145301&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2023.145301&rft_dat=%3Cproquest_cross%3E3040372671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040372671&rft_id=info:pmid/&rft_els_id=S1385894723040329&rfr_iscdi=true |