Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm

This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-10, Vol.473, p.145301, Article 145301
Hauptverfasser: Lee, Jaeheon, Bae, Jaekyung, Koo, Junemo, Jeong, Keunhong, Lee, Sang Myeon, Jung, Heesoo, Kim, Min-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 145301
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 473
creator Lee, Jaeheon
Bae, Jaekyung
Koo, Junemo
Jeong, Keunhong
Lee, Sang Myeon
Jung, Heesoo
Kim, Min-Kun
description This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions. [Display omitted] •Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.
doi_str_mv 10.1016/j.cej.2023.145301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040372671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894723040329</els_id><sourcerecordid>3040372671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AHdZumnNo48UVzL4ggE3zjqk6U2b2mnGJB2Yf2-GunZ1L5zvHDgnSe4Jzggm5eOQKRgyiinLSF4wTC6SFeEVSxkl9DL-jBcpr_PqOrnxfsAYlzWpV4ndTS04H-TUmqlDoQekZJDjKRiFVA974607BGMnZPUin-RkO5iiOlpnWkBHI1HjQH6H3tm565Ga3RFQjESRg3OSHLvIhn5_m1xpOXq4-7vrZPf68rV5T7efbx-b522qGMMhpYwqCq3msiRVWfCC5VWuVaUbTktNocFcVqSs6wKkbKEoWqWpVlzzJq-hLtg6eVhyD87-zOCDiE0UjKOcwM5eMJxjVtGyIhElC6qc9d6BFgdn9tKdBMHiPK4YRBxXnMcVy7jR87R4IHY4GnDCKwOTgtY4UEG01vzj_gX2UoSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040372671</pqid></control><display><type>article</type><title>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Jaeheon ; Bae, Jaekyung ; Koo, Junemo ; Jeong, Keunhong ; Lee, Sang Myeon ; Jung, Heesoo ; Kim, Min-Kun</creator><creatorcontrib>Lee, Jaeheon ; Bae, Jaekyung ; Koo, Junemo ; Jeong, Keunhong ; Lee, Sang Myeon ; Jung, Heesoo ; Kim, Min-Kun</creatorcontrib><description>This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions. [Display omitted] •Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2023.145301</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>activated carbon ; algorithms ; Breakthrough curve ; catalysts ; catalytic activity ; Chemisorption ; chlorides ; cyanogen ; Cyanogen chloride ; diffusivity ; equations ; Genetic algorithm ; hydrolysis ; Machine learning</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-10, Vol.473, p.145301, Article 145301</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</citedby><cites>FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</cites><orcidid>0000-0002-0675-6103 ; 0000-0003-2061-0853 ; 0000-0002-9285-0728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2023.145301$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Lee, Jaeheon</creatorcontrib><creatorcontrib>Bae, Jaekyung</creatorcontrib><creatorcontrib>Koo, Junemo</creatorcontrib><creatorcontrib>Jeong, Keunhong</creatorcontrib><creatorcontrib>Lee, Sang Myeon</creatorcontrib><creatorcontrib>Jung, Heesoo</creatorcontrib><creatorcontrib>Kim, Min-Kun</creatorcontrib><title>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions. [Display omitted] •Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.</description><subject>activated carbon</subject><subject>algorithms</subject><subject>Breakthrough curve</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>Chemisorption</subject><subject>chlorides</subject><subject>cyanogen</subject><subject>Cyanogen chloride</subject><subject>diffusivity</subject><subject>equations</subject><subject>Genetic algorithm</subject><subject>hydrolysis</subject><subject>Machine learning</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOI7-AHdZumnNo48UVzL4ggE3zjqk6U2b2mnGJB2Yf2-GunZ1L5zvHDgnSe4Jzggm5eOQKRgyiinLSF4wTC6SFeEVSxkl9DL-jBcpr_PqOrnxfsAYlzWpV4ndTS04H-TUmqlDoQekZJDjKRiFVA974607BGMnZPUin-RkO5iiOlpnWkBHI1HjQH6H3tm565Ga3RFQjESRg3OSHLvIhn5_m1xpOXq4-7vrZPf68rV5T7efbx-b522qGMMhpYwqCq3msiRVWfCC5VWuVaUbTktNocFcVqSs6wKkbKEoWqWpVlzzJq-hLtg6eVhyD87-zOCDiE0UjKOcwM5eMJxjVtGyIhElC6qc9d6BFgdn9tKdBMHiPK4YRBxXnMcVy7jR87R4IHY4GnDCKwOTgtY4UEG01vzj_gX2UoSC</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lee, Jaeheon</creator><creator>Bae, Jaekyung</creator><creator>Koo, Junemo</creator><creator>Jeong, Keunhong</creator><creator>Lee, Sang Myeon</creator><creator>Jung, Heesoo</creator><creator>Kim, Min-Kun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0675-6103</orcidid><orcidid>https://orcid.org/0000-0003-2061-0853</orcidid><orcidid>https://orcid.org/0000-0002-9285-0728</orcidid></search><sort><creationdate>20231001</creationdate><title>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</title><author>Lee, Jaeheon ; Bae, Jaekyung ; Koo, Junemo ; Jeong, Keunhong ; Lee, Sang Myeon ; Jung, Heesoo ; Kim, Min-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-232c2edf8a61765853474fc7fb826f2eb08a716995eaade55dcf2fc8f8b49e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>activated carbon</topic><topic>algorithms</topic><topic>Breakthrough curve</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>Chemisorption</topic><topic>chlorides</topic><topic>cyanogen</topic><topic>Cyanogen chloride</topic><topic>diffusivity</topic><topic>equations</topic><topic>Genetic algorithm</topic><topic>hydrolysis</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaeheon</creatorcontrib><creatorcontrib>Bae, Jaekyung</creatorcontrib><creatorcontrib>Koo, Junemo</creatorcontrib><creatorcontrib>Jeong, Keunhong</creatorcontrib><creatorcontrib>Lee, Sang Myeon</creatorcontrib><creatorcontrib>Jung, Heesoo</creatorcontrib><creatorcontrib>Kim, Min-Kun</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaeheon</au><au>Bae, Jaekyung</au><au>Koo, Junemo</au><au>Jeong, Keunhong</au><au>Lee, Sang Myeon</au><au>Jung, Heesoo</au><au>Kim, Min-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>473</volume><spage>145301</spage><pages>145301-</pages><artnum>145301</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions. [Display omitted] •Hydrolysis of CK within the metal-triethylenediamine complex was deeply studied.•TEDA accelerated the catalytic reaction of metal with CK by forming a water complex.•Breakthrough curve and species transport equation were compared based on the genetic algorithm.•First study to analyze chemisorbed breakthrough behavior in depth.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2023.145301</doi><orcidid>https://orcid.org/0000-0002-0675-6103</orcidid><orcidid>https://orcid.org/0000-0003-2061-0853</orcidid><orcidid>https://orcid.org/0000-0002-9285-0728</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-10, Vol.473, p.145301, Article 145301
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_3040372671
source Elsevier ScienceDirect Journals Complete
subjects activated carbon
algorithms
Breakthrough curve
catalysts
catalytic activity
Chemisorption
chlorides
cyanogen
Cyanogen chloride
diffusivity
equations
Genetic algorithm
hydrolysis
Machine learning
title Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20catalytic%20chemisorption%20of%20the%20cyanogen%20chloride%20via%20breakthrough%20curve%20and%20genetic%20algorithm&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Lee,%20Jaeheon&rft.date=2023-10-01&rft.volume=473&rft.spage=145301&rft.pages=145301-&rft.artnum=145301&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2023.145301&rft_dat=%3Cproquest_cross%3E3040372671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040372671&rft_id=info:pmid/&rft_els_id=S1385894723040329&rfr_iscdi=true