Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm
Since the behavior of photovoltaic (PV) modules under different operational conditions is highly nonlinear, predicting the performance of PV systems in industrial applications is becoming a major challenge issue. Moreover, the most important information required to configure an optimal PV system is...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-03, Vol.30 (15), p.44536-44552 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44552 |
---|---|
container_issue | 15 |
container_start_page | 44536 |
container_title | Environmental science and pollution research international |
container_volume | 30 |
creator | Benghanem, Mohamed Lekouaghet, Badis Haddad, Sofiane Soukkou, Ammar |
description | Since the behavior of photovoltaic (PV) modules under different operational conditions is highly nonlinear, predicting the performance of PV systems in industrial applications is becoming a major challenge issue. Moreover, the most important information required to configure an optimal PV system is unavailable in all manufacturer’s datasheets. In this context, a novel method is recommended to optimize PV cells/module parameters with the ability to correctly characterize the I-V and P–V curves of different PV models. In the present article, a chaotic map is incorporated in the so-called quasi-oppositional Rao-1 algorithm to improve its efficiency, and the resulting algorithm is named quasi-oppositional logistic chaotic Rao-1 (QOLCR) algorithm. Numerical results indicate that the QOLCR algorithm has presented very good performance in terms of accuracy and robustness. The idea is to minimize the root mean square error (RMSE) between the estimated and the actual data. Simulation results in the single diode model give an RMSE of value
7.73006208
×
10
-
4
, and in the double diode model, an RMSE of value
7.445111655
×
10
-
4
has been reached as the minimum value among the other compared optimization methods. Hence, the QOLCR approach also converges faster than the basic Rao-1 algorithm and its other variants. Moreover, the modified QO Rao-1 algorithm shows its perfectness and could be involved as tools for optimal designing of PV systems. |
doi_str_mv | 10.1007/s11356-022-24941-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040366726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040366726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d7c8a9f9e806dca6888e3842628743b9e005cb8578fbbf77610778521e2ec1f03</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoadK0fyCHIsglPajRh62PY1matrCwtCRnIcvyRsFeORo7JP31kbvpBz2kpxmYZ14xehA6YfQDo1SdA2OiloRyTnhlKkb4ATpiklVEVca8-Ks_RK8Bbijl1HD1Ch0KKUvD-BG634xTHOIPN8W0w6nD4x32oe_hfEjt3AfAo8tuCFPIgGeIuy12uIxiF0OLb2cHkaRxTBCXANfjPm0jTNFjf-3SUrNLhOGzb5v16vt77PptynG6Ht6gl53rIbx9qsfo6uLT5eoLWW8-f119XBNfUT2RVnntTGeCprL1Tmqtg9AVl1yrSjQmUFr7RtdKd03TKSUZVUrXnAUePOuoOEZn-9wxp9s5wGSHCMuFbhfSDFbQipbvUFz-F-VKGqGEkaqgp_-gN2nO5f5CaapMrZXgheJ7yucEkENnxxwHlx8so3ZRaPcKbVFofyq0y9K7p-i5GUL7e-WXswKIPQBltNuG_OftZ2IfAS5Upkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807958732</pqid></control><display><type>article</type><title>Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Benghanem, Mohamed ; Lekouaghet, Badis ; Haddad, Sofiane ; Soukkou, Ammar</creator><creatorcontrib>Benghanem, Mohamed ; Lekouaghet, Badis ; Haddad, Sofiane ; Soukkou, Ammar</creatorcontrib><description>Since the behavior of photovoltaic (PV) modules under different operational conditions is highly nonlinear, predicting the performance of PV systems in industrial applications is becoming a major challenge issue. Moreover, the most important information required to configure an optimal PV system is unavailable in all manufacturer’s datasheets. In this context, a novel method is recommended to optimize PV cells/module parameters with the ability to correctly characterize the I-V and P–V curves of different PV models. In the present article, a chaotic map is incorporated in the so-called quasi-oppositional Rao-1 algorithm to improve its efficiency, and the resulting algorithm is named quasi-oppositional logistic chaotic Rao-1 (QOLCR) algorithm. Numerical results indicate that the QOLCR algorithm has presented very good performance in terms of accuracy and robustness. The idea is to minimize the root mean square error (RMSE) between the estimated and the actual data. Simulation results in the single diode model give an RMSE of value
7.73006208
×
10
-
4
, and in the double diode model, an RMSE of value
7.445111655
×
10
-
4
has been reached as the minimum value among the other compared optimization methods. Hence, the QOLCR approach also converges faster than the basic Rao-1 algorithm and its other variants. Moreover, the modified QO Rao-1 algorithm shows its perfectness and could be involved as tools for optimal designing of PV systems.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-022-24941-2</identifier><identifier>PMID: 36692712</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Basic converters ; Computer Simulation ; diodes ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Industrial applications ; Mathematical models ; Modules ; Optimization ; Parameter modification ; Performance prediction ; Photovoltaic cells ; Photovoltaics ; Research Article ; Robustness (mathematics) ; Root-mean-square errors ; solar collectors ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2023-03, Vol.30 (15), p.44536-44552</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d7c8a9f9e806dca6888e3842628743b9e005cb8578fbbf77610778521e2ec1f03</citedby><cites>FETCH-LOGICAL-c408t-d7c8a9f9e806dca6888e3842628743b9e005cb8578fbbf77610778521e2ec1f03</cites><orcidid>0000-0002-2527-8741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-022-24941-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-022-24941-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36692712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benghanem, Mohamed</creatorcontrib><creatorcontrib>Lekouaghet, Badis</creatorcontrib><creatorcontrib>Haddad, Sofiane</creatorcontrib><creatorcontrib>Soukkou, Ammar</creatorcontrib><title>Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Since the behavior of photovoltaic (PV) modules under different operational conditions is highly nonlinear, predicting the performance of PV systems in industrial applications is becoming a major challenge issue. Moreover, the most important information required to configure an optimal PV system is unavailable in all manufacturer’s datasheets. In this context, a novel method is recommended to optimize PV cells/module parameters with the ability to correctly characterize the I-V and P–V curves of different PV models. In the present article, a chaotic map is incorporated in the so-called quasi-oppositional Rao-1 algorithm to improve its efficiency, and the resulting algorithm is named quasi-oppositional logistic chaotic Rao-1 (QOLCR) algorithm. Numerical results indicate that the QOLCR algorithm has presented very good performance in terms of accuracy and robustness. The idea is to minimize the root mean square error (RMSE) between the estimated and the actual data. Simulation results in the single diode model give an RMSE of value
7.73006208
×
10
-
4
, and in the double diode model, an RMSE of value
7.445111655
×
10
-
4
has been reached as the minimum value among the other compared optimization methods. Hence, the QOLCR approach also converges faster than the basic Rao-1 algorithm and its other variants. Moreover, the modified QO Rao-1 algorithm shows its perfectness and could be involved as tools for optimal designing of PV systems.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Basic converters</subject><subject>Computer Simulation</subject><subject>diodes</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Industrial applications</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Performance prediction</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Research Article</subject><subject>Robustness (mathematics)</subject><subject>Root-mean-square errors</subject><subject>solar collectors</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1r3DAQhkVoadK0fyCHIsglPajRh62PY1matrCwtCRnIcvyRsFeORo7JP31kbvpBz2kpxmYZ14xehA6YfQDo1SdA2OiloRyTnhlKkb4ATpiklVEVca8-Ks_RK8Bbijl1HD1Ch0KKUvD-BG634xTHOIPN8W0w6nD4x32oe_hfEjt3AfAo8tuCFPIgGeIuy12uIxiF0OLb2cHkaRxTBCXANfjPm0jTNFjf-3SUrNLhOGzb5v16vt77PptynG6Ht6gl53rIbx9qsfo6uLT5eoLWW8-f119XBNfUT2RVnntTGeCprL1Tmqtg9AVl1yrSjQmUFr7RtdKd03TKSUZVUrXnAUePOuoOEZn-9wxp9s5wGSHCMuFbhfSDFbQipbvUFz-F-VKGqGEkaqgp_-gN2nO5f5CaapMrZXgheJ7yucEkENnxxwHlx8so3ZRaPcKbVFofyq0y9K7p-i5GUL7e-WXswKIPQBltNuG_OftZ2IfAS5Upkk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Benghanem, Mohamed</creator><creator>Lekouaghet, Badis</creator><creator>Haddad, Sofiane</creator><creator>Soukkou, Ammar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2527-8741</orcidid></search><sort><creationdate>20230301</creationdate><title>Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm</title><author>Benghanem, Mohamed ; Lekouaghet, Badis ; Haddad, Sofiane ; Soukkou, Ammar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d7c8a9f9e806dca6888e3842628743b9e005cb8578fbbf77610778521e2ec1f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Basic converters</topic><topic>Computer Simulation</topic><topic>diodes</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Industrial applications</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Performance prediction</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Research Article</topic><topic>Robustness (mathematics)</topic><topic>Root-mean-square errors</topic><topic>solar collectors</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benghanem, Mohamed</creatorcontrib><creatorcontrib>Lekouaghet, Badis</creatorcontrib><creatorcontrib>Haddad, Sofiane</creatorcontrib><creatorcontrib>Soukkou, Ammar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benghanem, Mohamed</au><au>Lekouaghet, Badis</au><au>Haddad, Sofiane</au><au>Soukkou, Ammar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>30</volume><issue>15</issue><spage>44536</spage><epage>44552</epage><pages>44536-44552</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Since the behavior of photovoltaic (PV) modules under different operational conditions is highly nonlinear, predicting the performance of PV systems in industrial applications is becoming a major challenge issue. Moreover, the most important information required to configure an optimal PV system is unavailable in all manufacturer’s datasheets. In this context, a novel method is recommended to optimize PV cells/module parameters with the ability to correctly characterize the I-V and P–V curves of different PV models. In the present article, a chaotic map is incorporated in the so-called quasi-oppositional Rao-1 algorithm to improve its efficiency, and the resulting algorithm is named quasi-oppositional logistic chaotic Rao-1 (QOLCR) algorithm. Numerical results indicate that the QOLCR algorithm has presented very good performance in terms of accuracy and robustness. The idea is to minimize the root mean square error (RMSE) between the estimated and the actual data. Simulation results in the single diode model give an RMSE of value
7.73006208
×
10
-
4
, and in the double diode model, an RMSE of value
7.445111655
×
10
-
4
has been reached as the minimum value among the other compared optimization methods. Hence, the QOLCR approach also converges faster than the basic Rao-1 algorithm and its other variants. Moreover, the modified QO Rao-1 algorithm shows its perfectness and could be involved as tools for optimal designing of PV systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36692712</pmid><doi>10.1007/s11356-022-24941-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2527-8741</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2023-03, Vol.30 (15), p.44536-44552 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040366726 |
source | MEDLINE; SpringerLink Journals |
subjects | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Basic converters Computer Simulation diodes Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Industrial applications Mathematical models Modules Optimization Parameter modification Performance prediction Photovoltaic cells Photovoltaics Research Article Robustness (mathematics) Root-mean-square errors solar collectors Waste Water Technology Water Management Water Pollution Control |
title | Optimization of pv cells/modules parameters using a modified quasi-oppositional logistic chaotic rao-1 (QOLCR) algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20pv%20cells/modules%20parameters%20using%20a%20modified%20quasi-oppositional%20logistic%20chaotic%20rao-1%20(QOLCR)%20algorithm&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Benghanem,%20Mohamed&rft.date=2023-03-01&rft.volume=30&rft.issue=15&rft.spage=44536&rft.epage=44552&rft.pages=44536-44552&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-022-24941-2&rft_dat=%3Cproquest_cross%3E3040366726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807958732&rft_id=info:pmid/36692712&rfr_iscdi=true |