Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images
Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncon...
Gespeichert in:
Veröffentlicht in: | The international journal of cardiovascular imaging 2024-06, Vol.40 (6), p.1211-1220 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1220 |
---|---|
container_issue | 6 |
container_start_page | 1211 |
container_title | The international journal of cardiovascular imaging |
container_volume | 40 |
creator | Vande Berg, Baptiste De Keyzer, Frederik Cernicanu, Alexandru Claus, Piet Masci, Pier Giorgio Bogaert, Jan Dresselaers, Tom |
description | Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncontrast-enhanced short axis (SAX) cine images via radiomics is sufficient to distinguish subjects with acute myocardial infarction (AMI) from controls. Cine balanced steady-state free-precession images acquired at 1.5 T from 99 AMI and 49 control patients were included. First, radiomic feature extraction of the left ventricular myocardium of end-diastolic (ED) and end-systolic (ES) frames was performed based on automated (AUTO) or manually corrected (MAN) segmentations. Next, top features were selected based on optimal classification results using a support vector machine (SVM) approach. The classification performances of the four radiomics models (using AUTO or MAN segmented ED or ES images), were measured by AUC, classification accuracy (CA), F1-score, sensitivity and specificity. The most accurate model was found when combining the features RunLengthNonUniformity, ClusterShade and Median obtained from the manually segmented ES images (CA = 0.846, F1 score = 0.847). ED analysis performed worse than ES, with lower CA and F1 scores (0.769 and 0.770, respectively). Manual correction of automated contours resulted in similar model features as the automated segmentations and did not improve classification results. A radiomics analysis can capture the inherent contrast in noncontrast mid-ventricular SAX cine images to distinguishing AMI from healthy subjects. The ES radiomics model was more accurate than the ED model. Manual correction of the autosegmentation did not provide significant classification improvements. |
doi_str_mv | 10.1007/s10554-024-03089-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040334216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073392332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-329b92c7b92808829b6b4b40d857fa963dacfde51f4659227927c7a2807b7153</originalsourceid><addsrcrecordid>eNp9kctOxSAQhonReH8BF4bEjZsqMG0pS3PiLdGYGPeEAlVMCwqt8fj0oud4iQsXwAzzzT-QH6E9So4oIfw4UVJVZUFYXkAaUYgVtEkbXhUNULb6K95AWyk9EkI5CLGONqCpgTBKNtHbrTIuDE6nolXJGmzsaPXogsehw0pPo8XDPGgVjVM9dr5TcVn22Aevgx-jSiO2_kF5nQUGZ15svnR66lXE6SHEsVCvLmHtvMWz61vsBnVv0w5a61Sf7O7y3EZ3Z6d3s4vi6ub8cnZyVWhg9VgAE61gmuetIU2Ts7ot25KYpuKdEjUYpTtjK9qVdSUY44JxzVWGectpBdvocCH7FMPzZNMoB5e07XvlbZiSBFISgJLROqMHf9DHMEWfH5cpDiAYAMsUW1A6hpSi7eRTzD-Kc0mJ_DBGLoyR2Rj5aYwUuWl_KT21gzXfLV9OZAAWQMolf2_jz-x_ZN8BJ9yZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073392332</pqid></control><display><type>article</type><title>Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vande Berg, Baptiste ; De Keyzer, Frederik ; Cernicanu, Alexandru ; Claus, Piet ; Masci, Pier Giorgio ; Bogaert, Jan ; Dresselaers, Tom</creator><creatorcontrib>Vande Berg, Baptiste ; De Keyzer, Frederik ; Cernicanu, Alexandru ; Claus, Piet ; Masci, Pier Giorgio ; Bogaert, Jan ; Dresselaers, Tom</creatorcontrib><description>Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncontrast-enhanced short axis (SAX) cine images via radiomics is sufficient to distinguish subjects with acute myocardial infarction (AMI) from controls. Cine balanced steady-state free-precession images acquired at 1.5 T from 99 AMI and 49 control patients were included. First, radiomic feature extraction of the left ventricular myocardium of end-diastolic (ED) and end-systolic (ES) frames was performed based on automated (AUTO) or manually corrected (MAN) segmentations. Next, top features were selected based on optimal classification results using a support vector machine (SVM) approach. The classification performances of the four radiomics models (using AUTO or MAN segmented ED or ES images), were measured by AUC, classification accuracy (CA), F1-score, sensitivity and specificity. The most accurate model was found when combining the features RunLengthNonUniformity, ClusterShade and Median obtained from the manually segmented ES images (CA = 0.846, F1 score = 0.847). ED analysis performed worse than ES, with lower CA and F1 scores (0.769 and 0.770, respectively). Manual correction of automated contours resulted in similar model features as the automated segmentations and did not improve classification results. A radiomics analysis can capture the inherent contrast in noncontrast mid-ventricular SAX cine images to distinguishing AMI from healthy subjects. The ES radiomics model was more accurate than the ED model. Manual correction of the autosegmentation did not provide significant classification improvements.</description><identifier>ISSN: 1875-8312</identifier><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1875-8312</identifier><identifier>EISSN: 1573-0743</identifier><identifier>DOI: 10.1007/s10554-024-03089-9</identifier><identifier>PMID: 38630210</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automation ; Cardiac Imaging ; Cardiology ; Classification ; Feature extraction ; Heart ; Heart attacks ; Image acquisition ; Image contrast ; Image enhancement ; Imaging ; Magnetic resonance ; Magnetic resonance imaging ; Medical imaging ; Medicine ; Medicine & Public Health ; Myocardial infarction ; Myocardium ; Original Paper ; Radiology ; Radiomics ; Support vector machines ; Ventricle</subject><ispartof>The international journal of cardiovascular imaging, 2024-06, Vol.40 (6), p.1211-1220</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-329b92c7b92808829b6b4b40d857fa963dacfde51f4659227927c7a2807b7153</cites><orcidid>0000-0002-9551-1246 ; 0000-0002-2013-639X ; 0000-0003-4465-6442 ; 0000-0001-5196-9530 ; 0000-0002-1855-3274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10554-024-03089-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10554-024-03089-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38630210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vande Berg, Baptiste</creatorcontrib><creatorcontrib>De Keyzer, Frederik</creatorcontrib><creatorcontrib>Cernicanu, Alexandru</creatorcontrib><creatorcontrib>Claus, Piet</creatorcontrib><creatorcontrib>Masci, Pier Giorgio</creatorcontrib><creatorcontrib>Bogaert, Jan</creatorcontrib><creatorcontrib>Dresselaers, Tom</creatorcontrib><title>Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images</title><title>The international journal of cardiovascular imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncontrast-enhanced short axis (SAX) cine images via radiomics is sufficient to distinguish subjects with acute myocardial infarction (AMI) from controls. Cine balanced steady-state free-precession images acquired at 1.5 T from 99 AMI and 49 control patients were included. First, radiomic feature extraction of the left ventricular myocardium of end-diastolic (ED) and end-systolic (ES) frames was performed based on automated (AUTO) or manually corrected (MAN) segmentations. Next, top features were selected based on optimal classification results using a support vector machine (SVM) approach. The classification performances of the four radiomics models (using AUTO or MAN segmented ED or ES images), were measured by AUC, classification accuracy (CA), F1-score, sensitivity and specificity. The most accurate model was found when combining the features RunLengthNonUniformity, ClusterShade and Median obtained from the manually segmented ES images (CA = 0.846, F1 score = 0.847). ED analysis performed worse than ES, with lower CA and F1 scores (0.769 and 0.770, respectively). Manual correction of automated contours resulted in similar model features as the automated segmentations and did not improve classification results. A radiomics analysis can capture the inherent contrast in noncontrast mid-ventricular SAX cine images to distinguishing AMI from healthy subjects. The ES radiomics model was more accurate than the ED model. Manual correction of the autosegmentation did not provide significant classification improvements.</description><subject>Automation</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Imaging</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Myocardial infarction</subject><subject>Myocardium</subject><subject>Original Paper</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Support vector machines</subject><subject>Ventricle</subject><issn>1875-8312</issn><issn>1569-5794</issn><issn>1875-8312</issn><issn>1573-0743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOxSAQhonReH8BF4bEjZsqMG0pS3PiLdGYGPeEAlVMCwqt8fj0oud4iQsXwAzzzT-QH6E9So4oIfw4UVJVZUFYXkAaUYgVtEkbXhUNULb6K95AWyk9EkI5CLGONqCpgTBKNtHbrTIuDE6nolXJGmzsaPXogsehw0pPo8XDPGgVjVM9dr5TcVn22Aevgx-jSiO2_kF5nQUGZ15svnR66lXE6SHEsVCvLmHtvMWz61vsBnVv0w5a61Sf7O7y3EZ3Z6d3s4vi6ub8cnZyVWhg9VgAE61gmuetIU2Ts7ot25KYpuKdEjUYpTtjK9qVdSUY44JxzVWGectpBdvocCH7FMPzZNMoB5e07XvlbZiSBFISgJLROqMHf9DHMEWfH5cpDiAYAMsUW1A6hpSi7eRTzD-Kc0mJ_DBGLoyR2Rj5aYwUuWl_KT21gzXfLV9OZAAWQMolf2_jz-x_ZN8BJ9yZXw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Vande Berg, Baptiste</creator><creator>De Keyzer, Frederik</creator><creator>Cernicanu, Alexandru</creator><creator>Claus, Piet</creator><creator>Masci, Pier Giorgio</creator><creator>Bogaert, Jan</creator><creator>Dresselaers, Tom</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9551-1246</orcidid><orcidid>https://orcid.org/0000-0002-2013-639X</orcidid><orcidid>https://orcid.org/0000-0003-4465-6442</orcidid><orcidid>https://orcid.org/0000-0001-5196-9530</orcidid><orcidid>https://orcid.org/0000-0002-1855-3274</orcidid></search><sort><creationdate>20240601</creationdate><title>Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images</title><author>Vande Berg, Baptiste ; De Keyzer, Frederik ; Cernicanu, Alexandru ; Claus, Piet ; Masci, Pier Giorgio ; Bogaert, Jan ; Dresselaers, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-329b92c7b92808829b6b4b40d857fa963dacfde51f4659227927c7a2807b7153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Imaging</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Myocardial infarction</topic><topic>Myocardium</topic><topic>Original Paper</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Support vector machines</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vande Berg, Baptiste</creatorcontrib><creatorcontrib>De Keyzer, Frederik</creatorcontrib><creatorcontrib>Cernicanu, Alexandru</creatorcontrib><creatorcontrib>Claus, Piet</creatorcontrib><creatorcontrib>Masci, Pier Giorgio</creatorcontrib><creatorcontrib>Bogaert, Jan</creatorcontrib><creatorcontrib>Dresselaers, Tom</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vande Berg, Baptiste</au><au>De Keyzer, Frederik</au><au>Cernicanu, Alexandru</au><au>Claus, Piet</au><au>Masci, Pier Giorgio</au><au>Bogaert, Jan</au><au>Dresselaers, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images</atitle><jtitle>The international journal of cardiovascular imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>40</volume><issue>6</issue><spage>1211</spage><epage>1220</epage><pages>1211-1220</pages><issn>1875-8312</issn><issn>1569-5794</issn><eissn>1875-8312</eissn><eissn>1573-0743</eissn><abstract>Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncontrast-enhanced short axis (SAX) cine images via radiomics is sufficient to distinguish subjects with acute myocardial infarction (AMI) from controls. Cine balanced steady-state free-precession images acquired at 1.5 T from 99 AMI and 49 control patients were included. First, radiomic feature extraction of the left ventricular myocardium of end-diastolic (ED) and end-systolic (ES) frames was performed based on automated (AUTO) or manually corrected (MAN) segmentations. Next, top features were selected based on optimal classification results using a support vector machine (SVM) approach. The classification performances of the four radiomics models (using AUTO or MAN segmented ED or ES images), were measured by AUC, classification accuracy (CA), F1-score, sensitivity and specificity. The most accurate model was found when combining the features RunLengthNonUniformity, ClusterShade and Median obtained from the manually segmented ES images (CA = 0.846, F1 score = 0.847). ED analysis performed worse than ES, with lower CA and F1 scores (0.769 and 0.770, respectively). Manual correction of automated contours resulted in similar model features as the automated segmentations and did not improve classification results. A radiomics analysis can capture the inherent contrast in noncontrast mid-ventricular SAX cine images to distinguishing AMI from healthy subjects. The ES radiomics model was more accurate than the ED model. Manual correction of the autosegmentation did not provide significant classification improvements.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38630210</pmid><doi>10.1007/s10554-024-03089-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9551-1246</orcidid><orcidid>https://orcid.org/0000-0002-2013-639X</orcidid><orcidid>https://orcid.org/0000-0003-4465-6442</orcidid><orcidid>https://orcid.org/0000-0001-5196-9530</orcidid><orcidid>https://orcid.org/0000-0002-1855-3274</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1875-8312 |
ispartof | The international journal of cardiovascular imaging, 2024-06, Vol.40 (6), p.1211-1220 |
issn | 1875-8312 1569-5794 1875-8312 1573-0743 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040334216 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automation Cardiac Imaging Cardiology Classification Feature extraction Heart Heart attacks Image acquisition Image contrast Image enhancement Imaging Magnetic resonance Magnetic resonance imaging Medical imaging Medicine Medicine & Public Health Myocardial infarction Myocardium Original Paper Radiology Radiomics Support vector machines Ventricle |
title | Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics-based%20detection%20of%20acute%20myocardial%20infarction%20on%20noncontrast%20enhanced%20midventricular%20short-axis%20cine%20CMR%20images&rft.jtitle=The%20international%20journal%20of%20cardiovascular%20imaging&rft.au=Vande%20Berg,%20Baptiste&rft.date=2024-06-01&rft.volume=40&rft.issue=6&rft.spage=1211&rft.epage=1220&rft.pages=1211-1220&rft.issn=1875-8312&rft.eissn=1875-8312&rft_id=info:doi/10.1007/s10554-024-03089-9&rft_dat=%3Cproquest_cross%3E3073392332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073392332&rft_id=info:pmid/38630210&rfr_iscdi=true |