Controlling the Magnetic Responsiveness of Cellulose Nanofiber Particles Embedded with Iron Oxide Nanoparticles
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. Howe...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2024-05, Vol.7 (5), p.3227-3237 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide Fe3O4 NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-Fe3O4 composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately −50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % Fe3O4 to TOCN, 1 T magnet). Furthermore, the influence of Fe3O4 NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin–biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.4c00213 |