Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning

Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-04, Vol.15 (16), p.4422-4429
Hauptverfasser: Meng, Qing-Yu, Wang, Rui, Shao, Hao-Yun, Wang, Yi-Lei, Wen, Xue-Liang, Yao, Cheng-Yu, Qiao, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4429
container_issue 16
container_start_page 4422
container_title The journal of physical chemistry letters
container_volume 15
creator Meng, Qing-Yu
Wang, Rui
Shao, Hao-Yun
Wang, Yi-Lei
Wen, Xue-Liang
Yao, Cheng-Yu
Qiao, Juan
description Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.
doi_str_mv 10.1021/acs.jpclett.4c00705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040321550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040321550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-45138e313387f80aa23e27e026c48a89dc455a2b1d07ea75ecdc94c80ea9ace63</originalsourceid><addsrcrecordid>eNp9kc9O4zAQxi0E4t_uEyAhH7m02HGcOEcoBVYq7GoFe42GybQYpXaxE0Rv3Dkh3pAn2dAWxAnJ0ljy7_tmPB9je1L0pUjkIWDs382wpqbppyhELvQa25ZFanq5NHr9y32L7cR4J0RWCJNvsi1lsiRThdpmz38CoY3E_9KkraGx3vHuNLfEj72r-ImN0aNdPgwdhcmc-zEfPnqcY22RD96eXi8XbOTW8X8QrG8jv3x7ejmnhsKCIz6sCZvQeZx450PkDxb4BeCtdcRHBMFZN_nBNsZQR_q5qrvs-nR4NTjvjX6f_RocjXqQFLrppVoqQ0oqZfKxEQCJoiQnkWSYGjBFhanWkNzISuQEuSassEjRCIICkDK1yw6WvrPg71uKTTm1EamuwVE3e6lEKlQitRYdqpYoBh9joHE5C3YKYV5KUb6nUHYplKsUylUKnWp_1aC9mVL1qflYewccLoGF2rfBdf_91vI_2oWZsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040321550</pqid></control><display><type>article</type><title>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</title><source>ACS Publications</source><creator>Meng, Qing-Yu ; Wang, Rui ; Shao, Hao-Yun ; Wang, Yi-Lei ; Wen, Xue-Liang ; Yao, Cheng-Yu ; Qiao, Juan</creator><creatorcontrib>Meng, Qing-Yu ; Wang, Rui ; Shao, Hao-Yun ; Wang, Yi-Lei ; Wen, Xue-Liang ; Yao, Cheng-Yu ; Qiao, Juan</creatorcontrib><description>Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c00705</identifier><identifier>PMID: 38626393</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2024-04, Vol.15 (16), p.4422-4429</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a295t-45138e313387f80aa23e27e026c48a89dc455a2b1d07ea75ecdc94c80ea9ace63</cites><orcidid>0000-0002-9919-3927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.4c00705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.4c00705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38626393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Qing-Yu</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Shao, Hao-Yun</creatorcontrib><creatorcontrib>Wang, Yi-Lei</creatorcontrib><creatorcontrib>Wen, Xue-Liang</creatorcontrib><creatorcontrib>Yao, Cheng-Yu</creatorcontrib><creatorcontrib>Qiao, Juan</creatorcontrib><title>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9O4zAQxi0E4t_uEyAhH7m02HGcOEcoBVYq7GoFe42GybQYpXaxE0Rv3Dkh3pAn2dAWxAnJ0ljy7_tmPB9je1L0pUjkIWDs382wpqbppyhELvQa25ZFanq5NHr9y32L7cR4J0RWCJNvsi1lsiRThdpmz38CoY3E_9KkraGx3vHuNLfEj72r-ImN0aNdPgwdhcmc-zEfPnqcY22RD96eXi8XbOTW8X8QrG8jv3x7ejmnhsKCIz6sCZvQeZx450PkDxb4BeCtdcRHBMFZN_nBNsZQR_q5qrvs-nR4NTjvjX6f_RocjXqQFLrppVoqQ0oqZfKxEQCJoiQnkWSYGjBFhanWkNzISuQEuSassEjRCIICkDK1yw6WvrPg71uKTTm1EamuwVE3e6lEKlQitRYdqpYoBh9joHE5C3YKYV5KUb6nUHYplKsUylUKnWp_1aC9mVL1qflYewccLoGF2rfBdf_91vI_2oWZsw</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Meng, Qing-Yu</creator><creator>Wang, Rui</creator><creator>Shao, Hao-Yun</creator><creator>Wang, Yi-Lei</creator><creator>Wen, Xue-Liang</creator><creator>Yao, Cheng-Yu</creator><creator>Qiao, Juan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9919-3927</orcidid></search><sort><creationdate>20240425</creationdate><title>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</title><author>Meng, Qing-Yu ; Wang, Rui ; Shao, Hao-Yun ; Wang, Yi-Lei ; Wen, Xue-Liang ; Yao, Cheng-Yu ; Qiao, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-45138e313387f80aa23e27e026c48a89dc455a2b1d07ea75ecdc94c80ea9ace63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Qing-Yu</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Shao, Hao-Yun</creatorcontrib><creatorcontrib>Wang, Yi-Lei</creatorcontrib><creatorcontrib>Wen, Xue-Liang</creatorcontrib><creatorcontrib>Yao, Cheng-Yu</creatorcontrib><creatorcontrib>Qiao, Juan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Qing-Yu</au><au>Wang, Rui</au><au>Shao, Hao-Yun</au><au>Wang, Yi-Lei</au><au>Wen, Xue-Liang</au><au>Yao, Cheng-Yu</au><au>Qiao, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-04-25</date><risdate>2024</risdate><volume>15</volume><issue>16</issue><spage>4422</spage><epage>4429</epage><pages>4422-4429</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38626393</pmid><doi>10.1021/acs.jpclett.4c00705</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9919-3927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-04, Vol.15 (16), p.4422-4429
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_3040321550
source ACS Publications
subjects Physical Insights into Materials and Molecular Properties
title Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Regulation%20on%20the%20Bond%20Dissociation%20Energy%20of%20Exocyclic%20C%E2%80%93N%20Bonds%20in%20Various%20N%E2%80%91Heterocycle%20Electron%20Donors%20via%20Machine%20Learning&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Meng,%20Qing-Yu&rft.date=2024-04-25&rft.volume=15&rft.issue=16&rft.spage=4422&rft.epage=4429&rft.pages=4422-4429&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c00705&rft_dat=%3Cproquest_cross%3E3040321550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040321550&rft_id=info:pmid/38626393&rfr_iscdi=true