Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning
Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imp...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-04, Vol.15 (16), p.4422-4429 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4429 |
---|---|
container_issue | 16 |
container_start_page | 4422 |
container_title | The journal of physical chemistry letters |
container_volume | 15 |
creator | Meng, Qing-Yu Wang, Rui Shao, Hao-Yun Wang, Yi-Lei Wen, Xue-Liang Yao, Cheng-Yu Qiao, Juan |
description | Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts. |
doi_str_mv | 10.1021/acs.jpclett.4c00705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040321550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040321550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-45138e313387f80aa23e27e026c48a89dc455a2b1d07ea75ecdc94c80ea9ace63</originalsourceid><addsrcrecordid>eNp9kc9O4zAQxi0E4t_uEyAhH7m02HGcOEcoBVYq7GoFe42GybQYpXaxE0Rv3Dkh3pAn2dAWxAnJ0ljy7_tmPB9je1L0pUjkIWDs382wpqbppyhELvQa25ZFanq5NHr9y32L7cR4J0RWCJNvsi1lsiRThdpmz38CoY3E_9KkraGx3vHuNLfEj72r-ImN0aNdPgwdhcmc-zEfPnqcY22RD96eXi8XbOTW8X8QrG8jv3x7ejmnhsKCIz6sCZvQeZx450PkDxb4BeCtdcRHBMFZN_nBNsZQR_q5qrvs-nR4NTjvjX6f_RocjXqQFLrppVoqQ0oqZfKxEQCJoiQnkWSYGjBFhanWkNzISuQEuSassEjRCIICkDK1yw6WvrPg71uKTTm1EamuwVE3e6lEKlQitRYdqpYoBh9joHE5C3YKYV5KUb6nUHYplKsUylUKnWp_1aC9mVL1qflYewccLoGF2rfBdf_91vI_2oWZsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040321550</pqid></control><display><type>article</type><title>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</title><source>ACS Publications</source><creator>Meng, Qing-Yu ; Wang, Rui ; Shao, Hao-Yun ; Wang, Yi-Lei ; Wen, Xue-Liang ; Yao, Cheng-Yu ; Qiao, Juan</creator><creatorcontrib>Meng, Qing-Yu ; Wang, Rui ; Shao, Hao-Yun ; Wang, Yi-Lei ; Wen, Xue-Liang ; Yao, Cheng-Yu ; Qiao, Juan</creatorcontrib><description>Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c00705</identifier><identifier>PMID: 38626393</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2024-04, Vol.15 (16), p.4422-4429</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a295t-45138e313387f80aa23e27e026c48a89dc455a2b1d07ea75ecdc94c80ea9ace63</cites><orcidid>0000-0002-9919-3927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.4c00705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.4c00705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38626393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Qing-Yu</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Shao, Hao-Yun</creatorcontrib><creatorcontrib>Wang, Yi-Lei</creatorcontrib><creatorcontrib>Wen, Xue-Liang</creatorcontrib><creatorcontrib>Yao, Cheng-Yu</creatorcontrib><creatorcontrib>Qiao, Juan</creatorcontrib><title>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9O4zAQxi0E4t_uEyAhH7m02HGcOEcoBVYq7GoFe42GybQYpXaxE0Rv3Dkh3pAn2dAWxAnJ0ljy7_tmPB9je1L0pUjkIWDs382wpqbppyhELvQa25ZFanq5NHr9y32L7cR4J0RWCJNvsi1lsiRThdpmz38CoY3E_9KkraGx3vHuNLfEj72r-ImN0aNdPgwdhcmc-zEfPnqcY22RD96eXi8XbOTW8X8QrG8jv3x7ejmnhsKCIz6sCZvQeZx450PkDxb4BeCtdcRHBMFZN_nBNsZQR_q5qrvs-nR4NTjvjX6f_RocjXqQFLrppVoqQ0oqZfKxEQCJoiQnkWSYGjBFhanWkNzISuQEuSassEjRCIICkDK1yw6WvrPg71uKTTm1EamuwVE3e6lEKlQitRYdqpYoBh9joHE5C3YKYV5KUb6nUHYplKsUylUKnWp_1aC9mVL1qflYewccLoGF2rfBdf_91vI_2oWZsw</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Meng, Qing-Yu</creator><creator>Wang, Rui</creator><creator>Shao, Hao-Yun</creator><creator>Wang, Yi-Lei</creator><creator>Wen, Xue-Liang</creator><creator>Yao, Cheng-Yu</creator><creator>Qiao, Juan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9919-3927</orcidid></search><sort><creationdate>20240425</creationdate><title>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</title><author>Meng, Qing-Yu ; Wang, Rui ; Shao, Hao-Yun ; Wang, Yi-Lei ; Wen, Xue-Liang ; Yao, Cheng-Yu ; Qiao, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-45138e313387f80aa23e27e026c48a89dc455a2b1d07ea75ecdc94c80ea9ace63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Qing-Yu</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Shao, Hao-Yun</creatorcontrib><creatorcontrib>Wang, Yi-Lei</creatorcontrib><creatorcontrib>Wen, Xue-Liang</creatorcontrib><creatorcontrib>Yao, Cheng-Yu</creatorcontrib><creatorcontrib>Qiao, Juan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Qing-Yu</au><au>Wang, Rui</au><au>Shao, Hao-Yun</au><au>Wang, Yi-Lei</au><au>Wen, Xue-Liang</au><au>Yao, Cheng-Yu</au><au>Qiao, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-04-25</date><risdate>2024</risdate><volume>15</volume><issue>16</issue><spage>4422</spage><epage>4429</epage><pages>4422-4429</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C–N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C–N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C–N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron–N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38626393</pmid><doi>10.1021/acs.jpclett.4c00705</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9919-3927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2024-04, Vol.15 (16), p.4422-4429 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040321550 |
source | ACS Publications |
subjects | Physical Insights into Materials and Molecular Properties |
title | Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N‑Heterocycle Electron Donors via Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Regulation%20on%20the%20Bond%20Dissociation%20Energy%20of%20Exocyclic%20C%E2%80%93N%20Bonds%20in%20Various%20N%E2%80%91Heterocycle%20Electron%20Donors%20via%20Machine%20Learning&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Meng,%20Qing-Yu&rft.date=2024-04-25&rft.volume=15&rft.issue=16&rft.spage=4422&rft.epage=4429&rft.pages=4422-4429&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c00705&rft_dat=%3Cproquest_cross%3E3040321550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040321550&rft_id=info:pmid/38626393&rfr_iscdi=true |