Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction
Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived S...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-05, Vol.63 (22), p.e202404015-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e202404015 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Wang, Changli Lv, Zunhang Liu, Yarong Liu, Rui Sun, Caiting Wang, Jinming Li, Liuhua Liu, Xiangjian Feng, Xiao Yang, Wenxiu Wang, Bo |
description | Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR.
The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction. |
doi_str_mv | 10.1002/anie.202404015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040320086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040320086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-2ec4f8617f9c25a1834068f420a8c7dd40c08a33910ab69fd18c3170248f153b3</originalsourceid><addsrcrecordid>eNpdkT9PwzAQxS0EEqWwMkdiYUnxnzhxxrZqaaWqlSjMkevYwSWJg5OoChMjI-Ij9pPgqqgD093pfvd0eg-AWwQHCEL8wEstBxjiAAYQ0TPQQxQjn0QROXd9QIgfMYouwVVdbx3PGAx74GPWpdZkstx_fo9MmcrUW9nMSQlvankhd8a-eeu2qoxtdJl5w8YUbjfS-6-fJV5hb60bWXvKWG-ms1enMlFKCy1L0XmTXIrGGsEbnneNOxu7gyeZtqLRprwGF4rntbz5q33wMp08j2f-YvU4Hw8XfoXDkPpYikCxEEUqFphyxEgAQ6YCDDkTUZoGUEDGCYkR5JswViligqDI-cAUomRD-uD-qFtZ897KukkKXQuZ57yUpq0T4vwiGEIWOvTuH7o1rS3dd46i1NmHaOyo-EjtdC67pLK64LZLEEwOOSSHHJJTDslwOZ-cJvILEwCATg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055851159</pqid></control><display><type>article</type><title>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</title><source>Access via Wiley Online Library</source><creator>Wang, Changli ; Lv, Zunhang ; Liu, Yarong ; Liu, Rui ; Sun, Caiting ; Wang, Jinming ; Li, Liuhua ; Liu, Xiangjian ; Feng, Xiao ; Yang, Wenxiu ; Wang, Bo</creator><creatorcontrib>Wang, Changli ; Lv, Zunhang ; Liu, Yarong ; Liu, Rui ; Sun, Caiting ; Wang, Jinming ; Li, Liuhua ; Liu, Xiangjian ; Feng, Xiao ; Yang, Wenxiu ; Wang, Bo</creatorcontrib><description>Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR.
The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202404015</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Chemical bonds ; Chemical reduction ; Current density ; Density functional theory ; electrocatalytic CO2 reduction reaction ; Electron transfer ; Hydrogen ; hydrogen-bonded organic frameworks ; novel Bi−N2O2 site ; single atomic catalysts</subject><ispartof>Angewandte Chemie International Edition, 2024-05, Vol.63 (22), p.e202404015-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5408-2000 ; 0000-0001-9092-3252 ; 0000-0003-0654-4685 ; 0000-0002-3212-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202404015$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202404015$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Changli</creatorcontrib><creatorcontrib>Lv, Zunhang</creatorcontrib><creatorcontrib>Liu, Yarong</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Sun, Caiting</creatorcontrib><creatorcontrib>Wang, Jinming</creatorcontrib><creatorcontrib>Li, Liuhua</creatorcontrib><creatorcontrib>Liu, Xiangjian</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Yang, Wenxiu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</title><title>Angewandte Chemie International Edition</title><description>Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR.
The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>electrocatalytic CO2 reduction reaction</subject><subject>Electron transfer</subject><subject>Hydrogen</subject><subject>hydrogen-bonded organic frameworks</subject><subject>novel Bi−N2O2 site</subject><subject>single atomic catalysts</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkT9PwzAQxS0EEqWwMkdiYUnxnzhxxrZqaaWqlSjMkevYwSWJg5OoChMjI-Ij9pPgqqgD093pfvd0eg-AWwQHCEL8wEstBxjiAAYQ0TPQQxQjn0QROXd9QIgfMYouwVVdbx3PGAx74GPWpdZkstx_fo9MmcrUW9nMSQlvankhd8a-eeu2qoxtdJl5w8YUbjfS-6-fJV5hb60bWXvKWG-ms1enMlFKCy1L0XmTXIrGGsEbnneNOxu7gyeZtqLRprwGF4rntbz5q33wMp08j2f-YvU4Hw8XfoXDkPpYikCxEEUqFphyxEgAQ6YCDDkTUZoGUEDGCYkR5JswViligqDI-cAUomRD-uD-qFtZ897KukkKXQuZ57yUpq0T4vwiGEIWOvTuH7o1rS3dd46i1NmHaOyo-EjtdC67pLK64LZLEEwOOSSHHJJTDslwOZ-cJvILEwCATg</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Wang, Changli</creator><creator>Lv, Zunhang</creator><creator>Liu, Yarong</creator><creator>Liu, Rui</creator><creator>Sun, Caiting</creator><creator>Wang, Jinming</creator><creator>Li, Liuhua</creator><creator>Liu, Xiangjian</creator><creator>Feng, Xiao</creator><creator>Yang, Wenxiu</creator><creator>Wang, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5408-2000</orcidid><orcidid>https://orcid.org/0000-0001-9092-3252</orcidid><orcidid>https://orcid.org/0000-0003-0654-4685</orcidid><orcidid>https://orcid.org/0000-0002-3212-3051</orcidid></search><sort><creationdate>20240527</creationdate><title>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</title><author>Wang, Changli ; Lv, Zunhang ; Liu, Yarong ; Liu, Rui ; Sun, Caiting ; Wang, Jinming ; Li, Liuhua ; Liu, Xiangjian ; Feng, Xiao ; Yang, Wenxiu ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-2ec4f8617f9c25a1834068f420a8c7dd40c08a33910ab69fd18c3170248f153b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>electrocatalytic CO2 reduction reaction</topic><topic>Electron transfer</topic><topic>Hydrogen</topic><topic>hydrogen-bonded organic frameworks</topic><topic>novel Bi−N2O2 site</topic><topic>single atomic catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Changli</creatorcontrib><creatorcontrib>Lv, Zunhang</creatorcontrib><creatorcontrib>Liu, Yarong</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Sun, Caiting</creatorcontrib><creatorcontrib>Wang, Jinming</creatorcontrib><creatorcontrib>Li, Liuhua</creatorcontrib><creatorcontrib>Liu, Xiangjian</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Yang, Wenxiu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Changli</au><au>Lv, Zunhang</au><au>Liu, Yarong</au><au>Liu, Rui</au><au>Sun, Caiting</au><au>Wang, Jinming</au><au>Li, Liuhua</au><au>Liu, Xiangjian</au><au>Feng, Xiao</au><au>Yang, Wenxiu</au><au>Wang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-05-27</date><risdate>2024</risdate><volume>63</volume><issue>22</issue><spage>e202404015</spage><epage>n/a</epage><pages>e202404015-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR.
The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202404015</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-5408-2000</orcidid><orcidid>https://orcid.org/0000-0001-9092-3252</orcidid><orcidid>https://orcid.org/0000-0003-0654-4685</orcidid><orcidid>https://orcid.org/0000-0002-3212-3051</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-05, Vol.63 (22), p.e202404015-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040320086 |
source | Access via Wiley Online Library |
subjects | Carbon dioxide Catalysts Chemical bonds Chemical reduction Current density Density functional theory electrocatalytic CO2 reduction reaction Electron transfer Hydrogen hydrogen-bonded organic frameworks novel Bi−N2O2 site single atomic catalysts |
title | Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%E2%80%90Bonded%20Organic%20Framework%20Supporting%20Atomic%20Bi%E2%88%92N2O2%20Sites%20for%20High%E2%80%90Efficiency%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Changli&rft.date=2024-05-27&rft.volume=63&rft.issue=22&rft.spage=e202404015&rft.epage=n/a&rft.pages=e202404015-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202404015&rft_dat=%3Cproquest_wiley%3E3040320086%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055851159&rft_id=info:pmid/&rfr_iscdi=true |