Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction

Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-05, Vol.63 (22), p.e202404015-n/a
Hauptverfasser: Wang, Changli, Lv, Zunhang, Liu, Yarong, Liu, Rui, Sun, Caiting, Wang, Jinming, Li, Liuhua, Liu, Xiangjian, Feng, Xiao, Yang, Wenxiu, Wang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e202404015
container_title Angewandte Chemie International Edition
container_volume 63
creator Wang, Changli
Lv, Zunhang
Liu, Yarong
Liu, Rui
Sun, Caiting
Wang, Jinming
Li, Liuhua
Liu, Xiangjian
Feng, Xiao
Yang, Wenxiu
Wang, Bo
description Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR. The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.
doi_str_mv 10.1002/anie.202404015
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040320086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040320086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-2ec4f8617f9c25a1834068f420a8c7dd40c08a33910ab69fd18c3170248f153b3</originalsourceid><addsrcrecordid>eNpdkT9PwzAQxS0EEqWwMkdiYUnxnzhxxrZqaaWqlSjMkevYwSWJg5OoChMjI-Ij9pPgqqgD093pfvd0eg-AWwQHCEL8wEstBxjiAAYQ0TPQQxQjn0QROXd9QIgfMYouwVVdbx3PGAx74GPWpdZkstx_fo9MmcrUW9nMSQlvankhd8a-eeu2qoxtdJl5w8YUbjfS-6-fJV5hb60bWXvKWG-ms1enMlFKCy1L0XmTXIrGGsEbnneNOxu7gyeZtqLRprwGF4rntbz5q33wMp08j2f-YvU4Hw8XfoXDkPpYikCxEEUqFphyxEgAQ6YCDDkTUZoGUEDGCYkR5JswViligqDI-cAUomRD-uD-qFtZ897KukkKXQuZ57yUpq0T4vwiGEIWOvTuH7o1rS3dd46i1NmHaOyo-EjtdC67pLK64LZLEEwOOSSHHJJTDslwOZ-cJvILEwCATg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055851159</pqid></control><display><type>article</type><title>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</title><source>Access via Wiley Online Library</source><creator>Wang, Changli ; Lv, Zunhang ; Liu, Yarong ; Liu, Rui ; Sun, Caiting ; Wang, Jinming ; Li, Liuhua ; Liu, Xiangjian ; Feng, Xiao ; Yang, Wenxiu ; Wang, Bo</creator><creatorcontrib>Wang, Changli ; Lv, Zunhang ; Liu, Yarong ; Liu, Rui ; Sun, Caiting ; Wang, Jinming ; Li, Liuhua ; Liu, Xiangjian ; Feng, Xiao ; Yang, Wenxiu ; Wang, Bo</creatorcontrib><description>Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR. The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202404015</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Chemical bonds ; Chemical reduction ; Current density ; Density functional theory ; electrocatalytic CO2 reduction reaction ; Electron transfer ; Hydrogen ; hydrogen-bonded organic frameworks ; novel Bi−N2O2 site ; single atomic catalysts</subject><ispartof>Angewandte Chemie International Edition, 2024-05, Vol.63 (22), p.e202404015-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5408-2000 ; 0000-0001-9092-3252 ; 0000-0003-0654-4685 ; 0000-0002-3212-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202404015$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202404015$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Changli</creatorcontrib><creatorcontrib>Lv, Zunhang</creatorcontrib><creatorcontrib>Liu, Yarong</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Sun, Caiting</creatorcontrib><creatorcontrib>Wang, Jinming</creatorcontrib><creatorcontrib>Li, Liuhua</creatorcontrib><creatorcontrib>Liu, Xiangjian</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Yang, Wenxiu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</title><title>Angewandte Chemie International Edition</title><description>Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR. The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>electrocatalytic CO2 reduction reaction</subject><subject>Electron transfer</subject><subject>Hydrogen</subject><subject>hydrogen-bonded organic frameworks</subject><subject>novel Bi−N2O2 site</subject><subject>single atomic catalysts</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkT9PwzAQxS0EEqWwMkdiYUnxnzhxxrZqaaWqlSjMkevYwSWJg5OoChMjI-Ij9pPgqqgD093pfvd0eg-AWwQHCEL8wEstBxjiAAYQ0TPQQxQjn0QROXd9QIgfMYouwVVdbx3PGAx74GPWpdZkstx_fo9MmcrUW9nMSQlvankhd8a-eeu2qoxtdJl5w8YUbjfS-6-fJV5hb60bWXvKWG-ms1enMlFKCy1L0XmTXIrGGsEbnneNOxu7gyeZtqLRprwGF4rntbz5q33wMp08j2f-YvU4Hw8XfoXDkPpYikCxEEUqFphyxEgAQ6YCDDkTUZoGUEDGCYkR5JswViligqDI-cAUomRD-uD-qFtZ897KukkKXQuZ57yUpq0T4vwiGEIWOvTuH7o1rS3dd46i1NmHaOyo-EjtdC67pLK64LZLEEwOOSSHHJJTDslwOZ-cJvILEwCATg</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Wang, Changli</creator><creator>Lv, Zunhang</creator><creator>Liu, Yarong</creator><creator>Liu, Rui</creator><creator>Sun, Caiting</creator><creator>Wang, Jinming</creator><creator>Li, Liuhua</creator><creator>Liu, Xiangjian</creator><creator>Feng, Xiao</creator><creator>Yang, Wenxiu</creator><creator>Wang, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5408-2000</orcidid><orcidid>https://orcid.org/0000-0001-9092-3252</orcidid><orcidid>https://orcid.org/0000-0003-0654-4685</orcidid><orcidid>https://orcid.org/0000-0002-3212-3051</orcidid></search><sort><creationdate>20240527</creationdate><title>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</title><author>Wang, Changli ; Lv, Zunhang ; Liu, Yarong ; Liu, Rui ; Sun, Caiting ; Wang, Jinming ; Li, Liuhua ; Liu, Xiangjian ; Feng, Xiao ; Yang, Wenxiu ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-2ec4f8617f9c25a1834068f420a8c7dd40c08a33910ab69fd18c3170248f153b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>electrocatalytic CO2 reduction reaction</topic><topic>Electron transfer</topic><topic>Hydrogen</topic><topic>hydrogen-bonded organic frameworks</topic><topic>novel Bi−N2O2 site</topic><topic>single atomic catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Changli</creatorcontrib><creatorcontrib>Lv, Zunhang</creatorcontrib><creatorcontrib>Liu, Yarong</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Sun, Caiting</creatorcontrib><creatorcontrib>Wang, Jinming</creatorcontrib><creatorcontrib>Li, Liuhua</creatorcontrib><creatorcontrib>Liu, Xiangjian</creatorcontrib><creatorcontrib>Feng, Xiao</creatorcontrib><creatorcontrib>Yang, Wenxiu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Changli</au><au>Lv, Zunhang</au><au>Liu, Yarong</au><au>Liu, Rui</au><au>Sun, Caiting</au><au>Wang, Jinming</au><au>Li, Liuhua</au><au>Liu, Xiangjian</au><au>Feng, Xiao</au><au>Yang, Wenxiu</au><au>Wang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-05-27</date><risdate>2024</risdate><volume>63</volume><issue>22</issue><spage>e202404015</spage><epage>n/a</epage><pages>e202404015-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Single atomic catalysts (SACs) offer a superior platform for studying the structure–activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well‐defined and novel site configuration owing to the uncertainty of functional framework‐derived SACs through calcination. Herein, a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1‐HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm−2. And, Bi1‐HOF exhibits a long‐term stability of over 30 h under a successive potential‐step test with a current density of 100–400 mA cm−2. Density function theory (DFT) calculations illustrate that the novel Bi−N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M−N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure–activity relationships during CO2RR. The intercalation effect and interlayer coordination of Bi3+ ions result in an oriented variation of the exposed crystal plane and the slight lattice strain of the original hydrogen‐bonded organic framework, forming a novel Bi−N2O2 site supported on the (1 1 0) plane of hydrogen‐bonded organic framework for high‐efficiency electrocatalytic CO2 reduction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202404015</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-5408-2000</orcidid><orcidid>https://orcid.org/0000-0001-9092-3252</orcidid><orcidid>https://orcid.org/0000-0003-0654-4685</orcidid><orcidid>https://orcid.org/0000-0002-3212-3051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-05, Vol.63 (22), p.e202404015-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3040320086
source Access via Wiley Online Library
subjects Carbon dioxide
Catalysts
Chemical bonds
Chemical reduction
Current density
Density functional theory
electrocatalytic CO2 reduction reaction
Electron transfer
Hydrogen
hydrogen-bonded organic frameworks
novel Bi−N2O2 site
single atomic catalysts
title Hydrogen‐Bonded Organic Framework Supporting Atomic Bi−N2O2 Sites for High‐Efficiency Electrocatalytic CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%E2%80%90Bonded%20Organic%20Framework%20Supporting%20Atomic%20Bi%E2%88%92N2O2%20Sites%20for%20High%E2%80%90Efficiency%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Changli&rft.date=2024-05-27&rft.volume=63&rft.issue=22&rft.spage=e202404015&rft.epage=n/a&rft.pages=e202404015-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202404015&rft_dat=%3Cproquest_wiley%3E3040320086%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055851159&rft_id=info:pmid/&rfr_iscdi=true