Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma
•Nomograms integrating MRI-based radiomics and clinical-radiological features could serve as reliable and powerful tools to predict tumor response to ICT non-invasively.•The nomograms developed from Rad-Score in combination with clinical-radiological features demonstrated excellent predictive perfor...
Gespeichert in:
Veröffentlicht in: | European journal of radiology 2024-06, Vol.175, p.111438-111438, Article 111438 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111438 |
---|---|
container_issue | |
container_start_page | 111438 |
container_title | European journal of radiology |
container_volume | 175 |
creator | Chen, Zhiqiang Wang, Zhuo Liu, Shili Zhang, Shaoru Zhou, Yunshu Zhang, Ruodi Yang, Wenjun |
description | •Nomograms integrating MRI-based radiomics and clinical-radiological features could serve as reliable and powerful tools to predict tumor response to ICT non-invasively.•The nomograms developed from Rad-Score in combination with clinical-radiological features demonstrated excellent predictive performance.•The nomograms could successfully distinguish ICT responders from non-responders in NPC patients with high accuracy.
To establish nomograms integrating multiparametric MRI radiomics with clinical-radiological features to identify the responders and non-responders to induction chemotherapy (ICT) in nasopharyngeal carcinoma (NPC).
We retrospectively analyzed the clinical and MRI data of 168 NPC patients between December 2015 and April 2022. We used 3D-Slicer to segment the regions of interest (ROIs) and the “Pyradiomic” package to extract radiomics features. We applied the least absolute shrinkage and selection operator regression to select radiomics features. We developed clinical-only, radiomics-only, and the combined clinical-radiomics nomograms using logistic regression analysis. The receiver operating characteristic curves, DeLong test, calibration, and decision curves were used to assess the discriminative performance of the models. The model was internally validated using 10-fold cross-validation.
A total of 14 optimal features were finally selected to develop a radiomic signature, with an AUC of 0.891 (95 % CI, 0.825–0.946) in the training cohort and 0.837 (95 % CI, 0.723–0.932) in the testing cohort. The nomogram based on the Rad-Score and clinical-radiological factors for evaluating tumor response to ICT yielded an AUC of 0.926 (95 % CI, 0.875–0.965) and 0.901 (95 % CI, 0.815–0.979) in the two cohorts, respectively. Decision curves demonstrated that the combined clinical-radiomics nomograms were clinically useful.
Nomograms integrating multiparametric MRI-based radiomics and clinical-radiological features could non-invasively discriminate ICT responders from non-responders in NPC patients. |
doi_str_mv | 10.1016/j.ejrad.2024.111438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038444132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X24001542</els_id><sourcerecordid>3038444132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d13a54f2af84bd4cd352795f19b2b3aa99134d06747ce3d7913b895e07ed82783</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBCIHRa-AAn5yCWDXxknBw5oxWOlBSQEEjfLsTszHiV2sB3QfhZ_SM_OwpGDZXV1dVXbRchzzrac8d2r4xaO2fqtYEJtOedKdg_IhndaNFoL_ZBsmBasYar7fkGelHJkjLWqF4_Jhex2HE-_Ib8_pTnts50LHWwBT1Ok8zrVsFgEoebg6Mcv1xSNQpqDKzTECjhQkfsr1AN1U4jB2am5o0xpfyroCLauGQodU6ZLBh9cDXFP6wEowkuKBWhNqOZX7KCrO8CcsJ3tcoswjbak5WDzbdwDCjqbXYhptk_Jo9FOBZ7d35fk27u3X68-NDef319fvblpnGz72ngubatGYcdODV45L1uh-3bk_SAGaW3fc6k822mlHUivsRy6vgWmwXdCd_KSvDzrLjn9WKFUM4fiYJpshLQWI5nslFJcCqTKM9XlVEqG0Sw5zLi64cycsjJHc5eVOWVlzlnh1It7g3WYwf-b-RsOEl6fCYDP_Bkgm-ICRIefmcFV41P4r8EfZgergg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038444132</pqid></control><display><type>article</type><title>Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Chen, Zhiqiang ; Wang, Zhuo ; Liu, Shili ; Zhang, Shaoru ; Zhou, Yunshu ; Zhang, Ruodi ; Yang, Wenjun</creator><creatorcontrib>Chen, Zhiqiang ; Wang, Zhuo ; Liu, Shili ; Zhang, Shaoru ; Zhou, Yunshu ; Zhang, Ruodi ; Yang, Wenjun</creatorcontrib><description>•Nomograms integrating MRI-based radiomics and clinical-radiological features could serve as reliable and powerful tools to predict tumor response to ICT non-invasively.•The nomograms developed from Rad-Score in combination with clinical-radiological features demonstrated excellent predictive performance.•The nomograms could successfully distinguish ICT responders from non-responders in NPC patients with high accuracy.
To establish nomograms integrating multiparametric MRI radiomics with clinical-radiological features to identify the responders and non-responders to induction chemotherapy (ICT) in nasopharyngeal carcinoma (NPC).
We retrospectively analyzed the clinical and MRI data of 168 NPC patients between December 2015 and April 2022. We used 3D-Slicer to segment the regions of interest (ROIs) and the “Pyradiomic” package to extract radiomics features. We applied the least absolute shrinkage and selection operator regression to select radiomics features. We developed clinical-only, radiomics-only, and the combined clinical-radiomics nomograms using logistic regression analysis. The receiver operating characteristic curves, DeLong test, calibration, and decision curves were used to assess the discriminative performance of the models. The model was internally validated using 10-fold cross-validation.
A total of 14 optimal features were finally selected to develop a radiomic signature, with an AUC of 0.891 (95 % CI, 0.825–0.946) in the training cohort and 0.837 (95 % CI, 0.723–0.932) in the testing cohort. The nomogram based on the Rad-Score and clinical-radiological factors for evaluating tumor response to ICT yielded an AUC of 0.926 (95 % CI, 0.875–0.965) and 0.901 (95 % CI, 0.815–0.979) in the two cohorts, respectively. Decision curves demonstrated that the combined clinical-radiomics nomograms were clinically useful.
Nomograms integrating multiparametric MRI-based radiomics and clinical-radiological features could non-invasively discriminate ICT responders from non-responders in NPC patients.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2024.111438</identifier><identifier>PMID: 38613869</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adult ; Aged ; Female ; Humans ; Induction Chemotherapy ; Male ; Middle Aged ; Multiparametric Magnetic Resonance Imaging - methods ; Nasopharyngeal carcinoma ; Nasopharyngeal Carcinoma - diagnostic imaging ; Nasopharyngeal Carcinoma - drug therapy ; Nasopharyngeal Neoplasms - diagnostic imaging ; Nasopharyngeal Neoplasms - drug therapy ; Nomogram ; Nomograms ; Radiomics ; Response to induction chemotherapy ; Retrospective Studies ; Treatment Outcome ; Young Adult</subject><ispartof>European journal of radiology, 2024-06, Vol.175, p.111438-111438, Article 111438</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d13a54f2af84bd4cd352795f19b2b3aa99134d06747ce3d7913b895e07ed82783</citedby><cites>FETCH-LOGICAL-c359t-d13a54f2af84bd4cd352795f19b2b3aa99134d06747ce3d7913b895e07ed82783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejrad.2024.111438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38613869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Liu, Shili</creatorcontrib><creatorcontrib>Zhang, Shaoru</creatorcontrib><creatorcontrib>Zhou, Yunshu</creatorcontrib><creatorcontrib>Zhang, Ruodi</creatorcontrib><creatorcontrib>Yang, Wenjun</creatorcontrib><title>Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>•Nomograms integrating MRI-based radiomics and clinical-radiological features could serve as reliable and powerful tools to predict tumor response to ICT non-invasively.•The nomograms developed from Rad-Score in combination with clinical-radiological features demonstrated excellent predictive performance.•The nomograms could successfully distinguish ICT responders from non-responders in NPC patients with high accuracy.
To establish nomograms integrating multiparametric MRI radiomics with clinical-radiological features to identify the responders and non-responders to induction chemotherapy (ICT) in nasopharyngeal carcinoma (NPC).
We retrospectively analyzed the clinical and MRI data of 168 NPC patients between December 2015 and April 2022. We used 3D-Slicer to segment the regions of interest (ROIs) and the “Pyradiomic” package to extract radiomics features. We applied the least absolute shrinkage and selection operator regression to select radiomics features. We developed clinical-only, radiomics-only, and the combined clinical-radiomics nomograms using logistic regression analysis. The receiver operating characteristic curves, DeLong test, calibration, and decision curves were used to assess the discriminative performance of the models. The model was internally validated using 10-fold cross-validation.
A total of 14 optimal features were finally selected to develop a radiomic signature, with an AUC of 0.891 (95 % CI, 0.825–0.946) in the training cohort and 0.837 (95 % CI, 0.723–0.932) in the testing cohort. The nomogram based on the Rad-Score and clinical-radiological factors for evaluating tumor response to ICT yielded an AUC of 0.926 (95 % CI, 0.875–0.965) and 0.901 (95 % CI, 0.815–0.979) in the two cohorts, respectively. Decision curves demonstrated that the combined clinical-radiomics nomograms were clinically useful.
Nomograms integrating multiparametric MRI-based radiomics and clinical-radiological features could non-invasively discriminate ICT responders from non-responders in NPC patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Female</subject><subject>Humans</subject><subject>Induction Chemotherapy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiparametric Magnetic Resonance Imaging - methods</subject><subject>Nasopharyngeal carcinoma</subject><subject>Nasopharyngeal Carcinoma - diagnostic imaging</subject><subject>Nasopharyngeal Carcinoma - drug therapy</subject><subject>Nasopharyngeal Neoplasms - diagnostic imaging</subject><subject>Nasopharyngeal Neoplasms - drug therapy</subject><subject>Nomogram</subject><subject>Nomograms</subject><subject>Radiomics</subject><subject>Response to induction chemotherapy</subject><subject>Retrospective Studies</subject><subject>Treatment Outcome</subject><subject>Young Adult</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcuO1DAQtBCIHRa-AAn5yCWDXxknBw5oxWOlBSQEEjfLsTszHiV2sB3QfhZ_SM_OwpGDZXV1dVXbRchzzrac8d2r4xaO2fqtYEJtOedKdg_IhndaNFoL_ZBsmBasYar7fkGelHJkjLWqF4_Jhex2HE-_Ib8_pTnts50LHWwBT1Ok8zrVsFgEoebg6Mcv1xSNQpqDKzTECjhQkfsr1AN1U4jB2am5o0xpfyroCLauGQodU6ZLBh9cDXFP6wEowkuKBWhNqOZX7KCrO8CcsJ3tcoswjbak5WDzbdwDCjqbXYhptk_Jo9FOBZ7d35fk27u3X68-NDef319fvblpnGz72ngubatGYcdODV45L1uh-3bk_SAGaW3fc6k822mlHUivsRy6vgWmwXdCd_KSvDzrLjn9WKFUM4fiYJpshLQWI5nslFJcCqTKM9XlVEqG0Sw5zLi64cycsjJHc5eVOWVlzlnh1It7g3WYwf-b-RsOEl6fCYDP_Bkgm-ICRIefmcFV41P4r8EfZgergg</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Chen, Zhiqiang</creator><creator>Wang, Zhuo</creator><creator>Liu, Shili</creator><creator>Zhang, Shaoru</creator><creator>Zhou, Yunshu</creator><creator>Zhang, Ruodi</creator><creator>Yang, Wenjun</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202406</creationdate><title>Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma</title><author>Chen, Zhiqiang ; Wang, Zhuo ; Liu, Shili ; Zhang, Shaoru ; Zhou, Yunshu ; Zhang, Ruodi ; Yang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d13a54f2af84bd4cd352795f19b2b3aa99134d06747ce3d7913b895e07ed82783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Female</topic><topic>Humans</topic><topic>Induction Chemotherapy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiparametric Magnetic Resonance Imaging - methods</topic><topic>Nasopharyngeal carcinoma</topic><topic>Nasopharyngeal Carcinoma - diagnostic imaging</topic><topic>Nasopharyngeal Carcinoma - drug therapy</topic><topic>Nasopharyngeal Neoplasms - diagnostic imaging</topic><topic>Nasopharyngeal Neoplasms - drug therapy</topic><topic>Nomogram</topic><topic>Nomograms</topic><topic>Radiomics</topic><topic>Response to induction chemotherapy</topic><topic>Retrospective Studies</topic><topic>Treatment Outcome</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Liu, Shili</creatorcontrib><creatorcontrib>Zhang, Shaoru</creatorcontrib><creatorcontrib>Zhou, Yunshu</creatorcontrib><creatorcontrib>Zhang, Ruodi</creatorcontrib><creatorcontrib>Yang, Wenjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhiqiang</au><au>Wang, Zhuo</au><au>Liu, Shili</au><au>Zhang, Shaoru</au><au>Zhou, Yunshu</au><au>Zhang, Ruodi</au><au>Yang, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2024-06</date><risdate>2024</risdate><volume>175</volume><spage>111438</spage><epage>111438</epage><pages>111438-111438</pages><artnum>111438</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>•Nomograms integrating MRI-based radiomics and clinical-radiological features could serve as reliable and powerful tools to predict tumor response to ICT non-invasively.•The nomograms developed from Rad-Score in combination with clinical-radiological features demonstrated excellent predictive performance.•The nomograms could successfully distinguish ICT responders from non-responders in NPC patients with high accuracy.
To establish nomograms integrating multiparametric MRI radiomics with clinical-radiological features to identify the responders and non-responders to induction chemotherapy (ICT) in nasopharyngeal carcinoma (NPC).
We retrospectively analyzed the clinical and MRI data of 168 NPC patients between December 2015 and April 2022. We used 3D-Slicer to segment the regions of interest (ROIs) and the “Pyradiomic” package to extract radiomics features. We applied the least absolute shrinkage and selection operator regression to select radiomics features. We developed clinical-only, radiomics-only, and the combined clinical-radiomics nomograms using logistic regression analysis. The receiver operating characteristic curves, DeLong test, calibration, and decision curves were used to assess the discriminative performance of the models. The model was internally validated using 10-fold cross-validation.
A total of 14 optimal features were finally selected to develop a radiomic signature, with an AUC of 0.891 (95 % CI, 0.825–0.946) in the training cohort and 0.837 (95 % CI, 0.723–0.932) in the testing cohort. The nomogram based on the Rad-Score and clinical-radiological factors for evaluating tumor response to ICT yielded an AUC of 0.926 (95 % CI, 0.875–0.965) and 0.901 (95 % CI, 0.815–0.979) in the two cohorts, respectively. Decision curves demonstrated that the combined clinical-radiomics nomograms were clinically useful.
Nomograms integrating multiparametric MRI-based radiomics and clinical-radiological features could non-invasively discriminate ICT responders from non-responders in NPC patients.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>38613869</pmid><doi>10.1016/j.ejrad.2024.111438</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0720-048X |
ispartof | European journal of radiology, 2024-06, Vol.175, p.111438-111438, Article 111438 |
issn | 0720-048X 1872-7727 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038444132 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Adult Aged Female Humans Induction Chemotherapy Male Middle Aged Multiparametric Magnetic Resonance Imaging - methods Nasopharyngeal carcinoma Nasopharyngeal Carcinoma - diagnostic imaging Nasopharyngeal Carcinoma - drug therapy Nasopharyngeal Neoplasms - diagnostic imaging Nasopharyngeal Neoplasms - drug therapy Nomogram Nomograms Radiomics Response to induction chemotherapy Retrospective Studies Treatment Outcome Young Adult |
title | Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nomograms%20based%20on%20multiparametric%20MRI%20radiomics%20integrated%20with%20clinical-radiological%20features%20for%20predicting%20the%20response%20to%20induction%20chemotherapy%20in%20nasopharyngeal%20carcinoma&rft.jtitle=European%20journal%20of%20radiology&rft.au=Chen,%20Zhiqiang&rft.date=2024-06&rft.volume=175&rft.spage=111438&rft.epage=111438&rft.pages=111438-111438&rft.artnum=111438&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2024.111438&rft_dat=%3Cproquest_cross%3E3038444132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038444132&rft_id=info:pmid/38613869&rft_els_id=S0720048X24001542&rfr_iscdi=true |